Growing and Designing 2D Transition Metal Dichalogenide (2D-TMDC) Materials for PARADIM Users

Marcus Marracci, 2018 PARADIM REU Intern B.S. Chemistry, California State University, Fullerton

REU Program: 2018 Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials Research Experience for Undergraduates (PARADIM REU) Program

PARADIM REU Principal Investigator: Dr. Darrell Schlom, Materials Science and Engineering, Cornell University

PARADIM REU Mentor: Dr. Betül Pamuk, Materials Science and Engineering, Cornell University; Mr. Don Werder, Cornell Center for Materials Research, Cornell University

Primary Source of PARADIM REU Funding: Support for PARADIM is provided under NSF Grant # DMR-1539918 as part of the Materials Innovation Platform Program

Contact: marcusmarracci@csu.fullerton.edu, schlom@cornell.edu, betul.pamuk@cornell.edu, djw326@cornell.edu Websites: http://paradim.cornell.edu/education, http://www.cnf.cornell.edu/cnf 2018reu.html

Abstract:

Two-dimensional transition metal dichalcogenides (2D-TMDs) were grown using the metal-organic chemical vapor deposition (MOCVD) method. MoS_2 and WS_2 monolayers were grown with 100-200 nm and 2-4 μ m grains respectively, and near-full coverage over a three-inch wafer. MoS_2 , $MoSe_2$, WS_2 , and WSe_2 , were simulated using density functional theory (DFT) in bulk, bilayer and monolayer structures. Raman active modes were identified and compared with literature and experiment with differences under 10 cm⁻¹. Electronic band structures were calculated for MoS_2 , $MoSe_2$, WS_2 , and WSe_2 monolayers with band gaps of 1.8, 1.6, 1.8, 1.6 eV with indirect to direct band gap transitions observed between bulk and monolayers for all materials except WSe_2 .

Research Summary:

2D-TMDs have unique properties that have applications in piezoelectronics, photovoltaics, valleytronics, modern electronics, and optoelectronics [1]. Study into these materials can further advance several devices such as solar cells and field effect transistors. The layers in bulk are held together by van der Waals forces and can be separated using the exfoliation method producing micron-scale samples [2]. MOCVD was used to grow 2D-TMDs such as MoS₂ and WS₂ on three-inch silicon wafers. The scalable growth of 2D-TMDs can produce samples to be studied by PARADIM users and advance the development of new devices.

 MoS_2 and WS_2 were grown using MOCVD on a silicon substrate with a 250 nm coating of SiO₂. The starting parameters were provided by Dr. Jiwoong Park [1] and varied until near-uniform coverage and large grains were obtained. Figure 1 shows the parameters which yielded 100-200 nm grains for $MoS_{2'}$ 2-4 μ m grains for $WS_{2'}$ and near-uniform coverage for both samples. SEM

		Ar Flow (sccm)		H ₂ Flow (sccm)	Metal Source (sccm)	Cł ś	nalcogen Source (sccm)	Temp Zone 1/2/3 (°C)		Time (hrs)	,
MoS ₂		1000		1	5		0.4	650/650/550		3.5	
WS ₂		1000	D	1	8		0.3	650/	650/550	6	
Lat Cons (/		tice tants \)		a Ref[7]	a (calculated	c I) Ref[7		c] (calcula		ted)	
	MoS ₂ (Ref[7],24000) MoSe ₂ (Ref[7],16948) WS ₂ (Ref[7],651387)			3.150	3.139 3.269		12.300 12.930		12.542 13.115		
				3.290							
				3.1530	3.146		12.323		12.656		
	WSe ₂ (Ref[7],652170)			3.282	3.273		12.960		13.222		

Figure 1: MOCVD growth parameters and lattice constants of bulk TMDs comparing DFT calculations with literature.

was used, on the Tescan Mira3 FESEM in the Cornell Center for Materials Research (CCMR), to determine degree of coverage and grain size, shown in Figure 2 for WS₂.

Raman spectroscopy was used to check chemical purity of the samples. Figure 3 shows a spectrum of $WS_{2'}$ obtained using the Renishaw InVia Confocal Raman microscope in the CCMR, which agrees with literature [1] and DFT calculations within 10 cm⁻¹ with peaks at 353 and 417 cm⁻¹.

Figure 2: Secondary electron SEM of WS_2 showing near-full coverage of a silicon wafer with 2-4 μ m grains.

Properties of MoS₂, MoSe₂, WS₂, and WSe₂ were simulated using DFT within the framework of the VASP package [3,4], which uses a plane-wave basis set to describe the valence-electron wave function and charge density [5] and Perdew-Burke-Ernzerhof revised for solids (PBEsol) was used for the exchange-correlation functional and the projector augmented wave pseudopotentials [6].

Initial structures for bulk materials were found on the Inorganic Crystal Structure Database (ICSD) [7]. The electronic energy was converged with a tolerance of 10^{-6} eV, the forces on the atoms were calculated, the atomic positions adjusted, and this two-step cycle repeated until the forces converged with a tolerance of 10^{-4} eV/Å. The lattice constants of the bulk structures are summarized in Figure 1. Monolayers and bilayers were constructed by increasing the out-of-plane lattice constant from bulk to approximately 25 Å, keeping n layers in a unit cell, n = 1 for monolayers and n = 2 for bilayers.

The lattice parameters were held constant and the atomic positions were relaxed with an electronic momentum mesh of $8 \times 8 \times 2$ for sulfides and $12 \times 12 \times 2$ for selenides. Differences in bond lengths and angles were analyzed between bulk, bilayer, and monolayer which were less than 1 mÅ and 1°.

Vibrational modes were calculated using relaxed structures and a $4 \times 4 \times 2$ electronic momentum mesh. Figure 3 shows the Raman active vibrational modes plotted on top of the experimentally obtained Raman

Figure 3, left: Raman spectra of WS_2 and Raman active vibrational modes calculated using DFT. Figure 4, right: Electronic band structure diagram of WS_2 in bulk, 4a, and a monolayer, 4b.

spectrum of WS₂. The calculated modes are found at 354 and 416 cm⁻¹, which agree with literature and experiment within 10 cm⁻¹ [1].

The electronic band structure was obtained by calculating the energy at each point in a $4 \times 4 \times 2$ electronic momentum mesh and mapping out a path between symmetry points [8]. The band gaps of MoS₂, MoSe₂, and WSe₂ monolayers were 1.8, 1.6, and 1.6 eV, which agree with experimental values within 0.1 eV. The calculation for a WS₂ monolayer is underestimated by approximately 0.3 eV with a band gap of 1.8 eV [2]. In MoS₂, MoSe₂, and WS₂ an indirect to direct band gap transition is observed between bulk and monolayer, but for WSe₂, the band gap remains indirect.

In summary, MoS₂ and WS₂ were grown with the MOCVD method and characterized by Raman spectroscopy and SEM. DFT was used to calculate lattice constants, vibrational modes, and electronic band structure. In the future, MoS₂ and WS₂ MOCVD parameters need to be adjusted to increase grain size and reduce bilayer growth, additionally, MoSe₂ and WSe₂ will be grown. More rigorous calculations could be performed by including spin-orbit coupling to get more accurate electronic band structures and phonon modes, potentially giving insight into the unexpected indirect band gap in WSe₂ monolayers.

Acknowledgements:

Support for PARADIM is provided under the NSF grant DMR-1539918 as part of the Materials Innovation Platform Program. Facilities for MOCVD were supplied by the Platform for the Accelerated Realization of, Analysis & Discovery of Interface Materials (PARADIM). SEM and Raman microscopes supplied by the CCMR. Calculations using DFT were performed on the TARDIS computing cluster provided by the Cornell University Center for Advanced Computing (CAC), with access given by Dr. Craig Fennie.

References:

- [1] Kang, Kibum, et al., Nature, 520, 7549 (2015).
- [2] W. Choi, et al., Mater. Today, (2017).
- [3] G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993).
- [4] G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999).
- [5] Brumme, T., et al., Physical Review B, 91, 15 (2015).
- [6] J. P. Perdew, et al., Phys. Rev. Lett. 100, 136406 (2008).
- [7] FIZ Karlsruhe. (n.d.). ICSD News. Retrieved from http://www2.fiz-karlsruhe.de/icsd_home. html, 24000(MoS2), 16948(MoSe2), 651387(WS2), 652170(WSe2).
- [8] Y. Hinuma, et al. Comp. Mat. Sci. 128, 140 (2017).