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Abstract:

PARADIM is an NSF-sponsored program that provides users access to the platform’s world unique equipment 
in order to expand their research and encourage discovery of new materials at an accelerated rate via materials 
design. In particular, the development of unique floating zone furnaces has led to a dramatic increase in the 
discovery of new materials with desirable properties (e.g. magnetic frustration). However, users are often 
unfamiliar with the equipment, and extensive training is often required for the acquisition of initial results. 
In order to assist the inexperienced user, machine learning software is being developed by the PARADIM 
DATA Collective (PDC) for the floating zone furnaces. At present, data were generated from a variety of 
floating zone growths to develop training sets. By landmarking key points from video footage, a computer 
can be trained to gauge the success of experiments. Subsequently, a computer can make recommendations to 
the user for on-the-fly experimental parameter changes should an experiment reach an unhealthy state.

Summary of Research:

A variety of floating zone growths were completed with 
parameters systematically manipulated to generate a 
diverse set of data. Key points of the experiments were 
selected to be landmarked for the training set. A python 
script was developed to extract the key parameters, 
such as laser position and inclination, rotation rate and 
direction, and feed rate and direction of both rods, and the 
laser power used, from the video data. Three main types 
of growth were characterized by the respective widths 
of the top, neck, and bottom of the molten zone: healthy 
(Figure 1), thinning (Figure 2), and convex (Figure 3). 
The potential causes and additional characterization, 
such as movement of the rods or molten zone, of these 
three types of molten zones were also determined.

Results and Conclusions:

Analysis of floating zone data led to the determination of 
three main categories of floating zones: healthy, thinning, 
and convex. Healthy floating zones, depicted in Figure 1, 
were characterized by a 11:10:11 ratio of widths of the 
top: neck: bottom of the molten zone, rods travelling 

in the same direction, no jerking motion of either rod, 
and little to no changes in molten zone shape or growth 
parameters. 

In contrast, a thinning molten zone, seen in Figure 2, 
consists of the width of the bottom solid/liquid interface 
being much larger than the neck and the top of the molten 
zone. Thinning molten zones are problematic because 
they lead to separation of the rods and potentially end 
the growth. They can be caused by the top feed rate 
being too slow to keep up with the seed rods travel 
rate, the power being too low to melt enough of the 
material, or the rods being too far apart. Thus, a thinning 
molten zone can be fixed by increasing the top feed rate, 
decreasing the bottom feed rate, increasing the power, or 
moving the rods closer together manually. 

Conversely, a convex molten zone (Figure 3) has a molten 
zone neck that is wider than the top and bottom rods, 
which consequently can cause the molten zone to fall. 
The top rod moving proportionately too quickly or the 
power being too high can produce a convex molten zone.
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By systematically altering parameters one at a time 
throughout a variety of experiments, a diverse training 
set of successful and unsuccessful crystal growths was 
developed. After inputting this data into a computer 
program, the computer will recognize not only when a 
growth is failing, but what parameters must be adjusted. 
Furthermore, the computer will be able to predict 
values such as crystal size and density, time left in the 
growth, and the melting point of the material via simple 
equations, such as the ones seen in Figure 4. 

More complex equations can also be implemented into 
the program to allow the computer to compute this 
experimental data automatically. Because the program 

will have access to thousands of data points, countless 
calculations will be performed giving the researcher a 
multitude of data about the material and growth that 
would have been otherwise lost or time consuming. Such 
an influx of data will streamline the process of materials 
research and improve the quality of results.

Future Work:

Further experiments using less traditional floating zone 
techniques must be conducted so that the data may be 
added to the training set. In addition to collecting more 
data, the landmarking program must be selected or 
developed. Subsequently, the selected training set can 
be officially landmarked and uploaded to the machine 
learning program. Once the program has learned 
sufficiently from the training set, it may be implemented.
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Figure 4: Sample calculations of crystal height, volume, and density 
desired from the machine learning program. Note: calculations 
assume no vaporization.

Figure 1, left: Landmarked image of a healthy molten zone marking the edge of the top rod (A,F), top of the molten zone (B,G), “neck” of the 
molten zone (C,H), bottom of the molten zone (D,I), and edge of the bottom rod (E,J). Figure 2, middle: Thinning molten zone due to user error. 
Respective widths of various parts of the molten zone characterize it as unhealthy. Figure 3, right: Convex molten zone characterized by the 
neck of the molten zone being the widest point.




