Superconducting Sr₂RuO₄ films A key step toward ground-state quantum computing

2019

MIP: PARADIM at Cornell University, DMR-1539918

Quantum computers promise exponentially enhanced efficiency in performing calculations of great real-world importance. Unfortunately, in virtually all implementations of a quantum computer, one of the states is an excited state that must, of necessity, decay spontaneously into its ground state. This 'decoherence' quickly destroys the quantum calculation. A fascinating alternative form of quantum computing has been proposed: braiding pairs of ground-state non-abelian anyons in two dimensions. Importantly, an anyon is *not* an excited state and so does not suffer decoherence, preserving quantum information ad infinitum. In principle one of the simplest ways to create and use pairs of such anyons occurs in odd-parity topological superconductors (OPTS). Sr₂RuO₄ is the leading candidate for an OPTS and phasesensitive measurements on Sr₂RuO₄-based heterostructures would be an excellent way to test whether Sr₂RuO₄ is suitable for this application.

Morgan L. Grandon (REU 2017), Lena F. Kourkoutis, Kyle M. Shen, and Darrell G. Schlom, Cornell University

H.P. Nair et al. APL Mater. 6 (2018) 101108.

Thin film techniques are appropriate for making such heterostructures, provided superconducting Sr_2RuO_4 films can be grown and incorporated into them. The challenge has been that Sr_2RuO_4 is the most disordersensitive superconductor known. PARADIM's in-house research team recently became the only group in the United States to have successfully synthesized superconducting thin films of Sr_2RuO_4 . The temperature at which PARADIM's Sr_2RuO_4 films superconduct is not only nearly twice as high as the best prior superconducting Sr_2RuO_4 films, but as can be seen from the figure even exceeds that of the best Sr_2RuO_4 single crystals.

