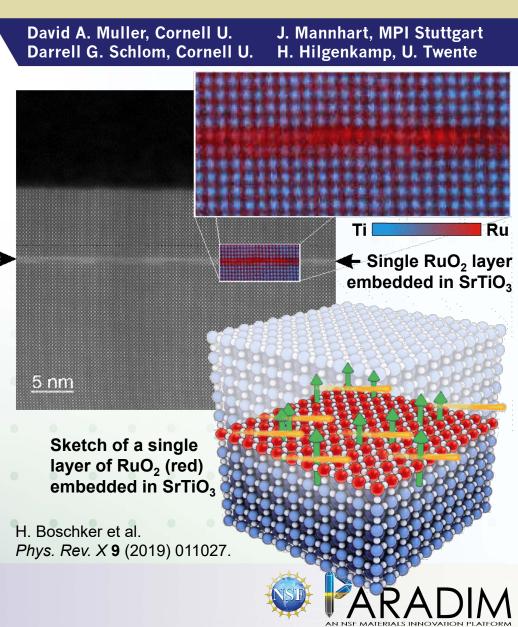
## An atomically thin ferromagnet—just one atom thick

## 2019

## How thin can a ferromagnet be?

**MIP: PARADIM at Cornell** 


University, DMR-1539918

Typical magnets are bulk materials containing stacks of layers. Theorists have suggested that shrinking the thickness to a single monolayer might destroy this behavior, but recent experiments show that ferromagnetism survives in monolayer-thin flakes of  $Crl_3$  and  $Cr_2Ge_2Te_6$ . Small-scale ferromagnetism can be vital to low-power electronic circuitry known as spintronics. To be able to make such circuitry smaller, it is  $\rightarrow$  important to understand the fundamental limits to ferromagnetism and to develop methods that can coat large-area integrated circuits.

PARADIM scientists collaborating with groups from around the world show that ferromagnetism can exist in a single monolayer of RuO<sub>2</sub> captured in the right packing between insulating surrounding layers.

The advantage of this new monolayer-thin ferromagnet over flakes of  $Crl_3$  or  $Cr_2Ge_2Te_6$  is that the oxide film can be deposited over large areas evenly, making it relevant to technology.



