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Abstract: 
Recent synthesis of large, single crystals of boron carbide (B4C) in a laser diode floating zone furnace (LDFZ) 
produced high purity single crystals ideal for characterization and development of advanced protection 
materials. The LDFZ method is challenging due to the complexity and breadth of tunable parameters. To 
improve LDFZ operational efficiency and outcome quality, image segmentation is being developed using the 
Mask R-CNN framework. A new, more precise and broader training set of >900 image has been produced to 
facilitate retraining the image-segmentation learner and advance application of ML in the LDFZ.  
 
Summary of Research:  
The optical floating zone technique is a powerful 
route to the preparation of single crystals of high-
purity materials. Such single crystals are important in 
the development of new materials for advanced 
optical and electronic devices. Floating-zone 
synthesis is challenging, however, due to the complex 
parameter space (Fig 1).  Successful floating-zone 
work often requires high-level expertise for 
successful development of new protocols.  Recently, 
image segmentation has proven a promising new 
route to optimization and acceleration of 
development of new floating-zone protocols [1].  In 
this study, we produced an expanded training set to 
improve and expand application of image 
segmentation to floating zone synthesis.  
Our new training set includes >900 images of each of 
three classes of molten zones for boron carbide 
(B4C) synthesis in a tilting laser diode optical 
floating zone furnace.  B4C is an important 
protection material valued for its lightweight yet 
extreme hardness and high stiffness.  B4C is the third 

hardest material known, exceeded only by diamond 
and cubic-boron nitride. 

 
Figure 1. Screenshot of the LDFZ control panel. User has 
to set and tune all these parameters during typical, multi-
hour experiments. 

Boron carbide’s high strength comes from its 
icosahedral structure and high-density of covalent 
bonds. Development and deployment of improved 



B4C depends on controlled, repeatable synthesis of 
pure single crystals important to characterizing 
directional strength and the role of impurities on 
mechanical behavior. A protocol to synthesize large, 
single crystals of B4C using PARADIM’s  laser 
diode floating zone equipment was developed by 
Straker, et al. [2], but growing single crystals remains 
difficult.  
Image segmentation can assist monitoring and user 
control of molten-zone geometry by identifying 
object classes and locations within an image.  The 
Mask R-CNN segmentation framework of He et al. 
[3] combines a region-of-interest model with a 
parallel instance segmentation model providing fast, 
effective segmentation. Carey et al. [1] created a 
learner to distinguish three variants of molten-zone 
geometry.  These classes correspond to a stable melt 
and two unstable melts caused by excessive 
extraction rate of the growing crystal or excessive 
feed rate of the pressed powder rod. The trained 
learner identifies the portion of the image made up of 
melt and classifies it into one of these three types in 
under a second and with high confidence [1].  
Results and Conclusions: 
Images used to create an expanded, higher-precision 
training set were derived from live video of a furnace 
growth specifically designed to provide examples of 
all three classes of interest; good melt, fast bottom 
and fast top.  Video was captured at one frame-per-
second and split into individual images.  Images were 
labeled using LabelMe [4], an open source program 
from MIT and freely available on Github [5], to mark 
polygonal outlines of the molten zone in each, 
individual frame. The upper portion of the growing 
crystal was labelled for a future ML model providing 
information about the uniformity of growth. Polygon 
coordinate points and identified classes were encoded 
in JSON files for the learner framework. 
Labeling images focused on the accurate coordinate 
placement and consistent definitions of polygonal 
outlines required to produce an accurate ML model. 
Two polygons per image were labeled (Fig. 3). One 
labels the molten zone; the second labels newly 
grown crystal. To accurately define the geometry of 
the molten zone,  polygonal masks were defined by 
18 points: four on top and bottom; three on the sides; 
and one on each corner of the molten zone. To meet 
the needs of the Mask R-CNN framework, all masks 
of a given type must be defined identically. Polygons 
for the new crystal are simpler than the molten zone 
and able to be defined by eight points: four along the 
top and four in each corner. The same number of 
points were used on each image and spaced roughly 
equidistant. For consistency, images were marked at 

235% magnification allowing accurate identification 
of the molten zone boundary (Fig 4).  
 

 
Fig 2.  Example of labeled LDFZ frame. Magenta polygon 
marks molten zone; blue marks part of lower crystal. 

 
Fig 3. Detail of  contact between molten zone and growing 
crystal. Lower limit of molten zone is along the bright line 
highlighted by the bracketing green arrows. 

Future Work:  
We have labeled ~300 images from each class. These 
will form the basis to retrain the model of Carey et al. 
[1] and subsequent evaluation of model accuracy 
compared to the earlier version. To evaluate 
accuracy, a training set of an additional 300 labeled 
images not used to train the model will be used to 
compare labeled masks and classes to those produced 
by the trained learner. After evaluation, we’ll focus 
on labeling an additional 900 available images as 
well as planning a subsequent furnace run to create a 
training set focused on improving identified gaps in 
learner recognition.  
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