

Bardeen-Cooper-Schrieffer Theory

$k_B T_c = 1.135 E_D e^{\overline{N(0)} V}$

- T_{c} superconducting transition temperature
- $E_n Debye energy (not exponentially sensitive)$
- V electron-phonon coupling (shouldn't vary much within a column of periodic table)
- N(0) electron density of states at Fermi level, evaluated using density-functional theory (DFT)

Mismatched Layered Materials

- consist of 2 alternating layers: a rocksalt and a transition metal dichalcogenide (TMD)
- defined by the formula $BiX + NbY_2$, where X is S, Se, or Te and Y is S, Se, creating the following materials:

		rock salt				
		BiS	BiSe	BiT		
TMD	NbS ₂	BiS + NbS ₂	BiSe + NbS ₂	BiTe + I		
	NbSe ₂	BiS + NbSe ₂	BiSe + NbSe ₂	BiTe + N		

Incommensurate Lattices

. Merrill et al., Materials 2015

Hanna Porter, 2021, unpublished

rationa	Inumber	approxir	nations (rocksalt:	IMU)

	BiS		Bi	BiTe		
	1+ <i>δ</i>	rs : TMD	$1 + \delta$	rs : TMD	1+ <i>δ</i>	r
NbS ₂	1.109	10:9	1.034	1:1	0.930	1
NbSe ₂	1.194	6:5	1.110	10:9	1.001	

Ab Initio Study of Mismatched Layered Superconductors

Sarah Uttormark (St. Olaf College) and T. A. Arias (Cornell)

rs:TMD 13:14

 $\frac{1}{2}$ for monolayer NbS₂ and monolayer NbSe₂ are 1.8 K and 3.1 K respectively. Listed below are the factors by which the superconducting temperature of each material improved compared to their respective monolayer TMD:

NbSo 5.0 9.3 4.6* NbSo 6.8 8.1 8.9		BiS	BiSe	BiTe
68 81 8Q	VbS ₂	5.0	9.3	4.6*
0.0 0.1 0.0	IbSe ₂	6.8	8.1	8.9

Conclusions:

The density of states calculations indicate that BiTe+NbSe, has the highest density of states at the Fermi level for this particular family of materials. Furthermore, this material is suspected to have the greatest T_{c} enhancement. Since T_c for monolayer NbSe₂ is 3.1K and the calculated enhancement is a factor of 8.88, we hypothesize that T_{r} for BiTe+NbSe₂ could be as high as 27 K.

Supported by NSF Cooperative Agreement No. DMR-2039380

BiSe	BiTe
2.5	2.0*
3.0	3.2

As larger X and Y atoms are used in the layered material, the designated by the *a* and *b* lattice vectors increases. These areas are listed in the table below. As a result of the increased lattice size, atoms in the material are spread out more, increasing the number of states in a given energy range. Thus, the resulting trend indicates that materials with larger lattice constants have a higher DOS at the Fermi level.

a×b [Ų]	BiS	BiSe	BiTe	
NbS ₂	38.08	38.29	39.73	
NbSe ₂	41.51	41.80	41.89	

Projected Density of States (PDOS)

• The largest contributions to the DOS at the Fermi level come from the *d* orbitals of the Nb atoms. The PDOS results for the other materials support this as well.

Lattice Constants

• lattice constants increase as elements in TMD layer and elements in rocksalt layer increase in size

S		BiSe			BiTe		
	С	а	b	С	а	b	С
76	11.60	6.58	5.82	11.80	6.62	6.00	12.09
)4	12.29	6.90	6.06	12.39	6.81	6.15	12.57

Why is Bigger Better?