Evaluating the quality of epitaxial In$_2$O$_3$ grown by sub oxide molecular beam epitaxy

Veronica Show1, Felix Hensling2,*, Darrell Schlom2,*

1Department of Chemistry, Harvey Mudd College, vshow@hmc.edu
2PARADIM, Materials Science and Engineering, Cornell University

Suboxide Molecular Beam Epitaxy

Suboxide molecular beam epitaxy (S-MBE) is a novel technique which can be used to grow high quality epitaxial thin films quickly at back-end-of-line (BEOL) applicable temperatures. [1] One material which can be grown is indium oxide, In$_2$O$_3$, which has potential application in transparent thin film transistors (TFTs).[2] In traditional MBE, the oxidation of indium on a substrate surface goes through a two step reaction consisting of a slow step and a fast step:

$$2 \text{In} + 3 \text{O} \rightarrow \text{In}_2\text{O}_3$$

However, S-MBE starts with an In$_2$O source rather than an elemental source by utilizing a mixture of metal and oxide powder resulting in an In$_2$O beam.[3] [4] Utilizing this technique, we grow epitaxial In$_2$O$_3$ thin films on YSZ001 with a growth rate of 0.66 μm/hr at the BEOL applicable temperature of less than 450°C. The bulk and surface quality of these films was evaluated by X-ray diffraction (XRD) and atomic force microscopy (AFM).

X-Ray Diffraction

XRD is used to measure the crystal structure of the films. The angle between the source and the film surface is 2θ, the angle between the detector and film surface is ω, and the sample stage can be rotated by ϕ.

![X-Ray Diffraction Image]

Atomic Force Microscopy

AFM is used to measure the surface topography and roughness of the films. A tip on a cantilever is repelled by and attracted to the surface and a laser is used to measure the deflection of the tip, providing an image of the surface.

![Atomic Force Microscopy Image]

Acknowledgments

I am grateful for the funding support from NSF Cooperative Agreement No. DMR-2039380. I would also like to thank Hanjong Paik and Matt Barone for their guidance with XRD. Additionally, I would like to thank the CESI Shared Facilities partly sponsored by the NSF MR DMR-1338010 and Kavli Institute at Cornell University for the AFM images. Thank you to PARADIM and Cornell University for providing the opportunity to make this research possible.

References

Hybrid Peaks and Full Width Half Maximum

Hybrid reflections can only occur when the bulk film is uniform and phase pure.[2] [5] [6] Utilizing this technique, we grow epitaxial In$_2$O$_3$ thin films on YSZ001 with a growth rate of 0.66 μm/hr at the BEOL applicable temperature of less than 450°C. The bulk and surface quality of these films was evaluated by X-ray diffraction (XRD) and atomic force microscopy (AFM).

Surface Quality

AFM was used to measure the surface topography and verify the relationship between smooth film surface and the presence of thickness fringes.

- Surface topography of two samples, a rough one and a smooth one
- Rough sample contains islands on its surface, thought to be excess In$_2$O which typically occur at 0º to 8º, but can appear at greater angles if surface is smooth
- Thickness fringes only occur when the surface of the film is smooth.
- Typically occur at 0º to 8º, but can appear at greater angles if surface is smooth
- Thickness fringes only appear on smooth sample
- Bulk of both samples is highly phase-pure and uniform due to hybrid reflection peak

Conclusion

S-MBE can grow high quality films rapidly at BEOL applicable temperatures as evaluated by XRD and AFM. The bulk quality was assessed by the presence of hybrid reflections and the agreement of the FWHM of the film and substrate. The surface quality of the films was assessed by the presence of thickness fringes and topography measurements. Compared to other In$_2$O$_3$ films, the speed and quality of growth is unparalleled.

Future Work

Because S-MBE is able to reach unmatched crystal quality at BEOL applicable temperatures, the next step would be the fabrication of BEOL TFTs using our films. This work would need to consider if the superior crystal quality correlates to superior electronic transport properties and address eventual challenges such as the active control of electronic properties and possible downsizing effects.

Bulk Quality

Hybrid Peaks and Full Width Half Maximum

The full width half maximum (FWHM) of the rocking curves of the film and substrate is compared to evaluate the bulk film quality.

- FWHM of film and substrate are approximately the same
- Few defects to broaden peak

Surface Quality

AFM was used to measure the surface topography and verify the relationship between smooth film surface and the presence of thickness fringes.

- Surface topography of two samples, a rough one and a smooth one
- Rough sample contains islands on its surface, thought to be excess In$_2$O which typically occur at 0º to 8º, but can appear at greater angles if surface is smooth
- Thickness fringes only occur when the surface of the film is smooth.
- Typically occur at 0º to 8º, but can appear at greater angles if surface is smooth
- Thickness fringes only appear on smooth sample
- Bulk of both samples is highly phase-pure and uniform due to hybrid reflection peak