Suboxide Molecular Beam Epitaxy—A new Thin Film Growth PARADIM

Local User Project - 2021

MIP: PARADIM at Cornell

University, DMR-1539918

PARADIM's in-house team worked with a collaborator at Penn State to develop a new variant of MBE that we call "suboxide MBE." In contrast to conventional MBE where the molecular beams are elemental, in suboxide MBE the molecular beams are pre-oxidized. Achieving the desired suboxide beams relies on extensive thermodynamic calculations made for the entire periodic table [1 + cover].

Seeing how well suboxide MBE works, this variant is now being used in 17 user projects! A recent publication from one of these users demonstrates its promise for the growth of the high-mobility, high-bandgap semiconductor β -Ga₂O₃.

Growing β -Ga₂O₃ by conventional MBE is quite challenging because it involves a 2-step oxidation reaction to go from the elemental Ga(g) of the molecular beam to $Ga_2O_3(s)$:

2 Ga + O \rightarrow Ga₂O followed by Ga₂O + 2 O \rightarrow Ga₂O₃ This

results in a rather complex growth regime.

Using suboxide MBE at PARADIM, the first step is bypassed by supplying a 99.98% pure molecular beam of pre-oxidized Ga₂O. The result is a dramatic increase in the growth rate of device-quality β -Ga₂O₃ films that can readily be made sufficiently thick for vertical devices.

D.G. Schlom, G.H. Xing, D. Jena, Cornell University Z.-K. Liu, Pennsylvania State University

Where Materials Begin and Society Benefits