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How do we know if a spectral peak is meaningful? Answering this question is central to extraction
of information such as the onset of phase changes. Recent advances in experimental methods and
detectors allows collection of more data more quickly and efficiently than ever before, providing the
opportunity to leverage data-intensive methods, such as artificial intelligence and machine learning,
to more rigorously evaluate spectra in real, or near real-time. Such on-the-fly data analysis provides
the opportunity to drive the decision-making process during experimentation with live-streamed data,
as it is being collected from an instrument. On-the-fly analysis is central to creating autonomous
experimental control and characterization of fundamental phenomena such as phase changes. Firstly,
however, an understanding of noise and signal structure must be established so as to allow rigorous,
repeatable analysis of the spectral data stream. Herein a statistical algorithm and programmatic
implementation for signal structure and phase change detection is introduced as a means of advancing
methods for the on-the-fly data analysis.

I. Introduction

Phase changes in diffraction patterns are commonly
recognized by the onset of peaks of prominent in-
tensity. Although this metric suffices for ideal pat-
terns with minimal to zero background noise, in
practice this criterion does not discriminate very
well for signals with random noise or when the ini-
tial onset of a transition or reaction progress is
sought. Instead of local prominence, local varia-
tion may be used as a metric for the presence of
a peak, analogous to how peaks could be detected
in an ideal pattern, using the derivative of the in-
tensity with respect to the angle (in the case of a
powder X-ray diffraction pattern).

The local variation at any point in the spec-
trum can be determined in a variety of ways, in-
cluding the variance, signal-to-noise ratio (SNR),
or coefficient of variation, which is the reciprocal
of the SNR, defined as γ = σ/µ for the standard
deviation, σ, and mean, µ, intensity of a signal.

Here, the coefficient of variation is used as a metric
for peak detection.

In particular, the coefficient of variation is
measured for small partitions of the diffraction pat-
tern, instead of the entire pattern. Then, pairwise
comparisons of the sample coefficient of variation
for adjacent regions is made and used as a metric
for peak detection. Importantly, it is the compari-
son of variation in successive regions we are inter-
ested in, ensuring that the noise is distributed very
nearly identically in either partition.

Another way of considering this test is to as-
sume that the diffraction pattern we are testing
does not contain any signal peaks. Then, when
variation is compared between adjacent regions, lit-
tle to no change in variability is expected. If instead
there is a large change in variability, contradicting
our initial assumption, there is reason to believe
that the variation in signal is changing and a peak
is present.
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i. Theory

This method of analysis is made possible because
the ratio of the estimated sample coefficients of
variation in two subsets of a population has been
shown to follow an F -distribution. In our case, the
population is all intensity values recorded on our
diffraction pattern and the subsets of the popula-
tion are the partitioned regions. The null hypothe-
sis of the test becomes equality for the coefficients
of variation. So, in the case that a peak exists in
region i, when the coefficient of variation in region
i and i + 1 are compared, we reject the null hy-
pothesis and assert that a peak exists in region i.
Forkman[1] derives this test statistic as Equation
(1),

F =
c21/(1 + c21(n1 − 1)/n1)

c22/(1 + c22(n2 − 1)/n2)
(1)

for subsets 1 and 2 with sample coefficients of vari-
ation and sample sizes c1, c2, n1, and n2.

Importantly, this test statistic allows for the
assignment of probabilities to all regions within a
diffraction pattern corresponding to the likelihood
of the presence of a peak. In theory, such a method
can be generalized to any signal with peaks and
random background noise.

II. Methods

Powder X-ray diffraction patterns of lanthanum
hexaboride with impurities of lanthanum tetra-
boride were collected and used for analysis and
testing. The only variable among different exper-
iments was exposure time, with one-, two-, and
four-minute exposures being used. A plot of these
patterns is shown in Figure 1.

All plotting and analysis was performed using
Python. Notably, partitioning the data sets was
carried out using a range of angles determined by
the full width at half maximum of the most intense
peak in the pattern. Subsequently, the determi-
nation of the sample mean and variance for each
partition was determined by bootstrapping. An
example partitioning of the data set is shown in
Figure 2.

10 20 30 40 50 60
Angle (deg)

0

100

200

300

400

500

In
te

ns
ity

All Diffraction Patterns
4 min Exposure
2 min Exposure
1 min Exposure

Figure 1: Diffraction patterns of lanthanum
hexaboride for all exposure times considered.

After partitioning, direct comparison of the
variation in adjacent partitions was done by Equa-
tion (1).

III. Results

The results of the algorithm are illustrated below.
Figure 3 depicts the probabilities assigned to the
partitions of a one-, two-, and four-minute expo-
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Figure 2: Example of partitioning data set into
discrete regions for pairwise comparison of sample
coefficients of variation. The partitions shown are
artificially large. In practice, the data set is split
up into more than 50 regions.
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(a) Peak likelihoods based on a
1-minute exposure.
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(b) Peak likelihoods based on a
2-minute exposure.
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(c) Peak likelihoods based on a
4-minute exposure.

Figure 3: Performance of automated peak-picking algorithm on noisy spectra for sample of lanthanum
hexaboride with minor impurities. Threshold for annotating on each plot is a peak likelihood of 0.8.

sure, i.e., the performance of the algorithm. In
practice, this algorithm would return a file contain-
ing peak likelihoods for all partitions of the data
set.

An interesting aspect of the assigned likeli-
hoods is how large they are. Many of the falsely
assigned points on the pattern maintain probabili-
ties well over 0.8, and while the true peaks typically
result in more significant test statistics and higher
probabilities, they are only marginally more sig-
nificant. This result is potentially due to the very
short exposure times chosen for testing, those being
no greater than four minutes.

Another interesting aspect is in Figure 3a,
with the double assignment of a peak to the same
region at around 30 degrees. This could lead to
issues if we are trying to convert the file of peak
likelihoods into a crystal structure.

IV. Discussion

i. Future Directions

As mentioned previously, there are clear outstand-
ing issues with the current algorithm, namely, the
double assignment of peaks as well as parameter
optimization. The former is not a large issue, as
a simple check to determine if a peak is assigned
to the same angle can be performed to ensure that
this does not happen.

The latter may require more work, either by
theoretical or brute force computational means. An
obvious parameter that is pattern-dependent and

Figure 4: Noise extracted and subtracted from
XRD diffraction of lanthanum hexaboride after
four minute exposure. Method for noise
extraction and visualization taken from
collaborators at SLAC, with permission.

needs to be optimized to the data set is the par-
tition size. A good standard that was used here
is the full-width at half-maximum of the most in-
tense peak in the signal. Though, tests to see how
the half-width at half-max, or the third-width at
half-max perform may be beneficial, for example.

Another parameter which could be optimized
is exposure time of the experiment. More specif-
ically, determining the exposure time for a given
sample which results in peak likelihoods which ex-
ceed some specified threshold. For example, finding
the time which leads to the most intense signal hav-
ing a peak likelihood of over 95%. This direction
parallels work that may be performed with collab-
orators at the SLAC National Laboratory.
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ii. Broader Context
In the broader context of on-the-fly data analy-
sis for data-driven experimentation, work presented
here is focused on analyzing and identifying peak
structure in noisy signals. In combination with an
understanding of noise structure in these signals,
picking out significant deviations from the baseline
of a signal, i.e., picking out peaks, can be performed
instantaneously, as data is collected and streamed
from an instrument.

In fact, our collaboration with the SLAC Na-
tional Laboratory has afforded a method for ex-
tracting noise from a signal[2], shown in Figure 4.
The corresponding processed pattern, as well as the
raw data, is shown in Figure 5.

In
te

ns
ity

Raw Signal

10 20 30 40 50 60
Angle (deg)

In
te

ns
ity

Processed Signal After Noise Extraction

4 min Exposure

Figure 5: Alignment of raw data with processed
data of lanthanum hexaboride diffraction pattern
after noise extraction.
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