

¹Department of Physics, Pennsylvania State University, ²Department of Materials Science and Engineering, Cornell University

Introduction

- Sr₂RuO₄ first garnered interest due to its shared structure with high temperature superconductor La_{2-x}Ba_xCuO₄
- Although Sr₂RuO₄ did not display high temperature superconductivity, the possibility of it displaying spin-triplet, topological superconductivity is still debated
- Spin-triplet superconductors can be useful for quantum computing applications

pairing Angle-resolved photoemission spectroscopy (ARPES) shows the effect of strain and chemical pressure on the Fermi surface of Ba_2RuO_4 , leading to the possibility of spintriplet pairing

Searching for Superconductivity in Ruthenate Thin Films Grown by **Molecular Beam Epitaxy**

Evan Krysko¹, Neha Wadehra², Darrell Schlom²

 2θ (Degrees)

- Growth conditions were selected using the Ellingham diagram for Ba and Ru oxides
- We searched for the ideal growth conditions by attempting growth with
- Growth temperatures
- Oxygen pressures
- Ru/Ba flux ratios
- All growths were performed on DyScO₃ (DSO) substrates oriented in the (110) direction

Temperature (K)

Growth Temperature: 845°C Oxygen Pressure 5x10⁻⁷ torr Ru/Ba Flux Ratio: 0.7

Growth Temperature: **850°**C Oxygen Pressure 5x10⁻⁷ torr Ru/Ba Flux Ratio:

[1] Maeno, Y., et. al. Journal of the Physics Society of Japan 81, 011009 (2012) [2] Hsu, Y.-T., et. al. Physical Review B **94**, 045118 (2016) [3] Burganov, B., et. al. Physical Review Letters **116**, 197003 (2016) [4] Ueno, Y., et. al. Physical Review Letters **111**, 087002 (2013) [5] Ishida, K., et. al. Nature **396**, 658 (1998) [6] Pustogow, A., *et. al. Nature* **574**, 72, (2019)