Epitaxial Growth of $\alpha-(\text{Al}_x\text{Ga}_{1-x})_2\text{O}_3$ by Suboxide Molecular Beam Epitaxy on A-Plane Sapphire

Ciaran Mackenzie institution
Alfred University Inamori School of Engineering
Mentor, Jacob Steel
P.I Darrell Shlom

Introduction
Alloying $\alpha-(\text{Al}_x\text{Ga}_{1-x})_2\text{O}_3$ creates a material with a tunable ultrawide bandgap ranging from 5.3 - 8.5 eV. This is much higher than other semiconductors including Ga$_2$O$_3$.

Benefits of using Suboxide MBE
- Using suboxide MBE skips the growth rate-limiting reaction step.
- Suboxide MBE has drastically increased the growth rate of Ga$_2$O$_3$.[3] Hopefully, it will do the same for $\alpha-(\text{Al}_x\text{Ga}_{1-x})_2\text{O}_3$.

Experimental Goals
- To grow films containing 0% to 100% Aluminum.
- To achieve a growth rate of one μm/hr.

Experimental Methods
- MBE growth was achieved using Al, Ga$_2$O, and 80% distilled ozone sources.
- Al flux and ozone pressure were constant while Ga$_2$O flux was varied.
- All films were grown on A-plane sapphire substrates, with growth temperatures between 575 - 725 °C.

Results

Effects of changing temperature
Decreasing either the substrate temperature or the aluminum flux lowers the aluminum incorporation.

Calculating Aluminum incorporation
The aluminum incorporation was calculated using data collected from the XRD graphs and Vegard’s law.[2]

Conclusions
Suboxide MBE is an effective way of growing epitaxial $\alpha-(\text{Al}_x\text{Ga}_{1-x})_2\text{O}_3$. By changing ozone pressure, substrate temperature, and/or relative fluxes, x can be tuned to anywhere within the range of 0-0.98. Growing at higher distilled ozone pressures allows for growth of high quality films with rates of over 1 μm/hr.

References

Acknowledgements
This research was completed in Darrell Schlom’s laboratory at Cornell University. Thank you to Jacob Steel for mentoring me throughout the summer. This work was funded through the NSF REU program at PARADIM (Platform for the Accelerated Realization, Analysis and Discovery of Interface Materials).