

Modeling Electronic Properties of Correlated Materials Using First Principles

Materials

- Optically Transparent
 - Conductive
- Tunable Electron Mobility

Strongly Correlated

 Charge Density Wave Superconductivity

• Ferromagnetic

NbSe,

(Hexagonal)

KTaO₃ (Cubic)

- Optically Tunable
- Spin Transport
- Superconductivity

KNbO₃ (Cubic initial)

• Optically Tunable Phase-based Polarity Piezoelectricity

Goal I

- Conduct theoretical calculations for the electronic structure of SrVO₃ and NbSe₂.
- Share results with ARPES team (Dr. Brendan Faeth and Anna Capuano) to compare experimental measurements with calculations.

Goal II

- Investigate whether a non-polar material like KTaO₃ can become polar due to strain in the system.
- Compare with respect to KNbO₃, which has polar phase geometries.

Acknowledgements

- PARADIM along with Cornell for hosting me.
- Johns Hopkins for providing the Rockfish supercluster.
- Dr. Betul Pamuk my mentor for her expert guidance and keen insight.
- Professor Darrell Schlom
- Dr. Brendan Faeth for being a wonderful collaborator.
- Jim Overhiser for being an excellent coordinator.

Saisrinivas Gudivada¹, Betul Pamuk², Darrell Schlom³

¹Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA ²Department of Physics, Cornell University, Ithaca, New York 14853, USA ³Department of Material Science and Engineering, Cornell University, Ithaca, New York 14853, USA

- Metal (Fermi Level through Conduction
- Bandwidth between 0.9 and 2.6 eV
- Minima on gamma point between -1.0 and -0.4 eV

NbSe₂

Attributes²

- Metal (Fermi Level through Conduction Bail
- After crossing Fermi level, gap between conduction and valence from 0.35 – 0.6 eV

This work is supported by the National Science Foundation (Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM)) under Cooperative Agreement No. DMR-2039380 and National Science Foundation (REU Site: Summer Research Program at PARADIM) under Cooperative Agreement No. DMR-2150446.

Similar to KTaO₃ except semi-conductor (gap < 2 eV).

•	0
	d
•	В

instabilities.

[1] R. Sakuma, Ph. Werner, and F. Aryasetiawan, Phys. Rev. B 88, 235110 (2013) [2] José Ángel Silva-Guillén et al 2016 2D Mater. 3 035028.

[3] Bouafia, H., Hiadsi, S., Abidri, B., Akriche, A., Ghalouci, L., & Sahli, B. (2013). Structural, elastic, electronic and thermodynamic properties of KTaO3 and NaTaO3: AB ini- tio investigations. Computational Materials Science, 75, 1-8.

https://doi.org/10.1016/j.commatsci.2013.03.030.

[4] Wang, D., Wang, G., Lu, Z., Al-Jlaihawi, Z., & Feteira, A. (2020). Crystal structure, phase transitions and Photo- ferroelectric properties of knbo3-based lead-free ferroelec- tric ceramics: A brief review. Frontiers in Materials, 7. https://doi.org/10.3389/fmats.2020.00091. [5] Materials Cloud. (n.d.). SeeK-path. https://www.materialscloud.org/work/tools/seekpath. [6] Quantum Espresso. (2022, March 22). https://www.quantum-espresso.org/