AN NSF MATERIALS INNOVATION PLATFORM	Electronic and vibrational properties of electron-doped transition-metal nitride halid RNX(R= Zr and X= Br, I) from first principles Jordan Brown, Betül Pamuk		ides
Abstract	Materials & Results		Applications used to Analyze &
	Orthorhombic space group <i>Pmmn</i> (#59)	Rhombohedral space group R3m(#166)	Perform DFT Calculations
• Using density functional theory (DFT), we study transition metal nitride halides	α- MNX STRUCTURE(x=Br, I)	β-MNX STRUCTURE(X=Br)	
RNX (R = Zr; X = Br, I).			
• The metal nitride halides <i>RNX</i> form two different polymorphs (a and B) in their	R T		
layered crystallized structures.			
• The parent compounds are band			
insulators, that when electron-doped become superconductors.			
• We used DFT calculations to calculate			
the energy as a function of electron density.		аьс ЖМ	

• We will discuss the electronic structure of RNX and the effects of electron doping on these materials in β -form.

Undoped Bandstructures

Introduction

- We studied both α and β semiconducting structures and compared their electronic structures using DFT.
- Our interest was in knowing what would happen when using the halides bromide and iodide.
- α- form polymorph crystallizes in the orthorhombic space group *Pmmn* (#59).
- β -form polymorph crystallizes in the rhombohedral space group R3m(#166).

GΖ

Conclusion

- Both α -ZrNBr and α -ZrNI are semiconductors with parabolic bands between Γ X and Γ Y.
- ZrNBr exists in the β-phase similar to
 β-ZrNCl in previous research.
- β-ZrNBr is a semiconductor with a single parabolic conduction band centered around the K-point.
- As β-ZrNBr is doped, the Fermi level shifts upward.

Methodology

- Performed first-principles calculations by using the Quantum-ESPRESSO software package.
- Generated experimental cell parameters using previous research
- Converted the cell parameters for our electron-doped beta structures from hexagonal to rhombohedral cell.
- The different pseudopotentials were generated with a non-relativistic calculation
- The Exchange-Correlation potential has been defined utilizing the PBE functional.

1.247 eV at the Γ point.

Energy (eV)

1.810 eV at the Γ point

1.441 eV.

Μ

Doped Li_xZrNBr Bandstructures

Future Work

For future work, we would like to calculate the vibrational properties better known as the phonons. We also would like to calculate the superconducting temperature.

Acknowledgements

NSF Cooperative Agreement No. DMR2039380
NSF Cooperative Agreement No. DMR2150446
Betül Pamuk
Darrell Schlom
Jim Overhiser