
Hands-On Exercises 

 

PARADIM Summer School 

An Introduction to Density Functional Theory for 

Experimentalists Including the Latest Advances 

 
Betül Pamuk, Feliciano Giustino, Tomás Arias 

Cornell University 

July 23-29, 2023 

 

 

These hands-on exercises are heavily based on, and in parts directly reproduced from the past PARADIM 

Summer Schools “An Introduction to Density Functional Theory for Experimentalists” from 2018 and 

2021, prepared and co-lectured by Feliciano Giustino of UT Austin as well as the tutorials at the JDFTx 

website http://jdftx.org/Tutorials.html. 

 

The original lecture notes and videos from past PARADIM summer schools by Feliciano Giustino can be 

accessed on the website: https://www.paradim.org/summer_schools  

 

 



Hands-On 0: Connecting to the supercomputer PARADIM, Cornell, July 23-29, 2023 

Hands-On 0 

Connecting to the supercomputer, ARCH at JHU 

 
We will be performing our calculations at the educational cluster of Advanced Research Computing at Hopkins (ARCH) 

supercomputer at Johns Hopkins University. Different operating systems can use different tools to connect to supercomputers: 

 

Linux or macOS  

 
For computers that run on Linux (e.g. Ubuntu, RedHat, etc.) or macOS, search for and open the Terminal app. We will use this 

option for the remainder of the Hands-On sessions. For the virtual machines that we use in this summer school, you will see 

the something like the following screen when you open the Terminal: 

 

 
 

We can now monitor the network availability of the cluster: 

 
$ ping paradim.arch.jhu.edu  

PING paradim.arch.jhu.edu (162.129.223.75): 56 data bytes 

64 bytes from 162.129.223.75: icmp_seq=0 ttl=30 time=82.495 ms 

64 bytes from 162.129.223.75: icmp_seq=1 ttl=30 time=79.949 ms 

 

To stop pinging, press Ctrl+C. Once you see the ping response, you are ready to continue to Hands-On 1. 

 

Windows 

 
For computers that run on Windows, you will need a software that can emulate a terminal and support a secure shell (SSH) 

connection.  

 

A popular choice our of many is PuTTY, which can be downloaded from: 

 

https://www.putty.org 

 

Once you install and open PuTTY, you will see the following screen: 
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Fist time you use PuTTY to connect to ARCH, in the field for “Host Name”, you will enter: 
paradim.arch.jhu.edu 

and in “Saved Sessions” enter: 
arch 

 

Then it will open a terminal window and ask you to enter your username and password: 

 

 
 

Next time you open PuTTY, you will see “arch” under the “Saved Sessions”, so you can “Load” it directly. 

 

From here on, everything is the same for all operating systems. 
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Hands-On 1 

Setting up ARCH 

 
Login shell and setting up the modules 

 
We will perform calculations on the at the educational cluster of ARCH supercomputer at JHU.  

 

To connect to arch, we first open a terminal as we have learned in previous section, and then type: 

 
$ ssh paradim.arch.jhu.edu -l paradim-bpamuk 

 

where the username paradim-bpamuk must be replaced by the username that you have been assigned. Once you hit enter, 

you will be prompted to enter your password: 

 
paradim-bpamuk@paradim.arch.jhu.edu's password: 

 
The very first time, your password is:  
temppass 

 

Then you should run the command: 
$ passwd 

and follow instructions on the terminal to set up your own unique password, which you will use going forward. 

 

Note that nothing appears while you are entering your password for security reasons, but it still registers what you are typing. 

When you enter your password, you will see a message with your last login info: 

 
Last login: Sun Jul 16 16:28:48 2023 from 50.46.233.216 

[paradim-bpamuk@paradim ~]$ 

 
We can now customize the Unix shell environment by editing the .bashrc file by shortening the prompt, creating alias’es 

for some shortcuts, loading modules and some commands that we will need to run the JDFTx code. Note that when you are 

copying and pasting from this document, you need copy the formatting correctly, because the bash shell is very strict with 

spaces. 

 
$ cat >> .bashrc << EOF 

PS1="$ " 

alias c="clear" 

alias l="ls -lrth --color="none" -column" 

export SCRATCH="/scratch/paradim/paradim-bpamuk" 

ml restore 

module load jdftx/1.7.0-gcc 

PATH="/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/scripts/:$PATH" 

EOF 

$ source ~/.bashrc 

 

Make sure to change paradim-bpamuk with your own username. This will make the prompt to be simply $ and the shortcuts 

command c for clearing the screen and l for listing the contents of a directory. The JDFTx code is already installed in the 

cluster, and we can access its executables by loading it as a module. Putting it in this file enables loading that module 

automatically when we log in to the cluster. We also add the post-processing scripts into our PATH to access them directly. 
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Next, we want to create a scratch directory (mkdir) from where we will run our calculations. The supercomputers are set up 

such that the users should never perform their calculations directly from their home directory, as this will be inefficient and 

slow down the collective access to the cluster. All the calculations must run from the scratch directory. 

 
$ mkdir $SCRATCH 

$ chmod go-rwx $SCRATCH 

 

The second line changes the permissions to that folder so that only you can edit the contents of it. 

 

We can also create a folder (mkdir) in the home directory (~) and go inside by changing directory (cd): 

 
$ mkdir ~/PARADIM ; cd ~/PARADIM 

 

Resources for the JDFTx code 

 
In this summer school, we will use the JDFTx software for joint density functional theory. JDFTx is an open-source software 

for ab initio electronic structure calculations based on plane wave basis sets and pseudopotentials.  

The website for JDFTx is http://www.jdftx.org/ This website contains details of its features that go beyond what is covered at 

this summer school as well as tutorials, some of which are incorporated here as hands-on exercises. 

 

 
 
You can also access the list and descriptions of all the parameters that are used in the input files here: 

http://jdftx.org/Commands.html  

 

Test run 

 
Now we are ready to perform a simple test calculation on the cluster to ensure that everything runs smoothly. 

 

As always, we will perform all our calculations in the $SCRATCH folder: 
$ cd $SCRATCH 

 

Let us create a folder specific for the calculations performed today: 
$ mkdir HandsOn1; cd HandsOn1 
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We will calculate the total energy of silicon and write out its electronic charge density. Silicon has a diamond lattice structure 

with a cubic lattice constant of 5.43 Angstroms. We can capture the periodicity of the crystal structure using the face-centered 

cubic Bravais lattice with two silicon atoms as basis. Based on this information, we can now create the input file: 

 
$ cat <<EOF > Si.in 

lattice face-centered Cubic 5.43 

latt-scale 1.88973 1.88973 1.88973  #Convert lattice vectors from Å to Bohr 

 

coords-type lattice        #Specify coordinates based on lattice vectors (fractional) 

ion Si 0.00 0.00 0.00  0   #This covers the vertex and face centers of the cube 

ion Si 0.25 0.25 0.25  0   #This covers the half-cell body centers 

 

kpoint-folding 8 8 8       #Brillouin zone sampling 

 

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/\$ID_lda.uspp 

elec-cutoff 20    #wavefcn (and density) cutoff in Ha 

elec-ex-corr lda 

electronic-SCF          #Perform a Self-Consistent Field optimization 

 

#Output files 

dump-name Si.\$VAR       #Prefix for the output files 

dump End ElecDensity     #Write out the final electronic charge density 

EOF 

 

The JDFTx code is based on pseudopotentials. For these tutorials, we will use the GBRV pseudopotentials 

https://www.physics.rutgers.edu/gbrv/ that are in the cluster under the directory: 

 
/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/ 

 

and we need to write the full path to this directory for the code to find and access these pseudopotential files. Note that all of 

this is in one line. 

 

To run our jobs, we will use interactive sessions in this tutorial. An interactive session is launched by the following command: 

 
$ interact -p defq -n 12 -t 120  

 

where the flag -p defq specifies which type of nodes will be used for the calculation and we will use the default queue for 

our calculations; the flag -n 12 asks for 12 cores from the defq nodes. We will increase this number as needed; the flag -t 

120 asks for this interactive session to run for 120 minutes.  

 

Important: We will run this interact command only once at the beginning of each session. 

 

You might need to wait for a few minutes for the interactive session to start. Once it starts, we can run the JDFTx code by the 

following command: 

 
$ mpirun -n 4 jdftx < Si.in > Si.out 

 

This command runs jdftx executable in parallel using mpirun on -n 4 cores, with the < flag specifying the input file 

Si.in and the output is piped into > flag to write the output to the file Si.out. Note that we can ask up to 12 cores here 

because we have started our interactive session above requesting 12 cores. 

 

This calculation takes about a minute to complete and the output file Si.out should look like the following: 

 
$ more Si.out 

 

*************** JDFTx 1.7.0  *************** 
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Start date and time: Mon Jul 17 17:28:32 2023 

Executable jdftx with command-line: -i Si.in 

Running on hosts (process indices):  c01 (0-3) 

Divided in process groups (process indices):  0 (0)  1 (1)  2 (2)  3 (3) 

Resource initialization completed at t[s]:      0.00 

Run totals: 4 processes, 24 threads, 0 GPUs 

 

 

Input parsed successfully to the following command list (including defaults): 

… 

 

Dumping 'Si.n' ... done 

End date and time: Mon Jul 17 17:28:47 2023  (Duration: 0-0:00:14.17) 

Done! 

 

Additionally, as we requested in the input file, the electronic charge density is written into the Si.n file, which is not human 

readable. 

 

Note that interactive sessions are typically used for code development to immediately access the outputs and debugging. For 

most production runs, we instead use a batch queueing system. To place a job in the queue, we prepare a job submission script 

file that specifies the resources needed for that job and submit it to a scheduler (SLURM in ARCH) that monitors the available 

resources and allocates them in order of priority. A job script file to run this calculation looks like this: 

 
$ cat << EOF > job.sh 

#!/bin/bash 

#SBATCH --job-name=paradim      #name of the job 

#SBATCH --time=02:00:00         #reservation time (hh:mm:ss) 

#SBATCH --partition=defq        #name of the queue, defines type of nodes to be used 

#SBATCH --nodes=1               #number of nodes 

#SBATCH --ntasks-per-node=4     #number of cores/tasks per node 

#SBATCH -x c02,c05              #exclude these two nodes which are problematic 

 

#load modules 

ml restore 

module load jdftx/1.7.0-gcc 

ml 

 

#run the calculation 

mpirun -n 4 jdftx < Si.in > Si.out 

EOF 

 

Once we create this file in the same folder as our input file Si.in, we can submit it to the queue: 

 
$ sbatch job.sh 

 

We can check the status of this job by using the squeue command with your username. If you forget your username, you can 

always check it by: 

 
$whoami 

paradim-bpamuk 

 

$ squeue -u paradim-bpamuk 

             JOBID PARTITION     NAME     USER ST       TIME  NODES NODELIST(REASON) 

              3857      defq  paradim paradim-  R       0:02      1 c01 

 

This shows that I have the the job with the name paradim running (ST: status R: running, PD: pending). 
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To stop a submitted job from running, you can use scancel command with its associated JOBID; e.g: 

 
$ scancel 3857 

 

Here is the resource from the arch website regarding the queueing system for further details: 

https://www.arch.jhu.edu/support/slurm-queueing-system/  

 

Generating new input files 

 

In this section we will generate new input files by modifying the already existing input file using vi instead of the cat 

command we used in the previous section. 

First, we will copy the previous file to a new file: 

 
$ cp Si.in Si-2.in 

 

Then, we will edit this new file using vi: 

 
$ vi Si-2.in 

 

vi opens the file within the same terminal window. There are two modes in vi: 1) command mode 2) insert mode. 

We navigate the document using the arrows instead of clicking on it. 

We need to hit i to go to the insert mode and then we can modify the document. 

We need to hit ESC to go to the command mode when we are done editing the document. 

We need to hit :wq to write and quit the document. 

 

Now as an example let us change the kinetic energy cutoff of the plane waves by editing the elec-cutoff parameter from 

20 Ha to 40 Ha. Details of this will be covered in the theory lectures. We can also change the Brillouin zone sampling by 

editing the parameter kpoint-folding from 8 8 8 to 16 16 16. This choice of parameters will make the calculations 

more accurate, and take slightly longer to compute: 

 
$ mpirun -n 4 jdftx < Si-2.in > Si-2.out 2>&1 & 

 

The last part of this command 2>&1 will write the error messages to the output file instead of the terminal console. You can 

safely ignore the OpenFabrics related warning and error messages for our purposes. The ampersand & symbol runs the 

command in the background so we can continue using the terminal while that continues to run. When it is done, you will receive 

the following message on the screen as you hit ENTER: 
$  

[1]+  Done                    mpirun -n 4 jdftx < Si-2.in > Si-2.out 2>&1 

 

Unix cheat sheet 

 
Below is a summary of useful Unix commands that we will use throughout this class: 

 
ls  List content of current folder 
clear  Clear the screen 
pwd  Print working directory 
cd thisfolder  Enter the folder called thisfolder 
cd ..  Go up one folder 
cd  Go to home directory 
more thisfile  Show the content of the file called thisfile 
rm thisfile  Remove the file called thisfile 

cp file1 file2  Copy file1 into file2 
mv thisfile thisfolder/  Move the file thisfile into the folder thisfolder 
vi thisfile  Open the file thisfile using the Vi text editor 



Hands-On 1: Setting up ARCH PARADIM, Cornell, July 23-29, 2023 

grep thisword thisfile  Search for the word thisword inside the file thisfile 
man thiscommand  Show the manual page for the command thiscommand 

scp myfile username@remoteip:~/  Copy the file myfile to the home directory of user username 

in the remote computer identified by the IP address remoteip. 

 

Copying files from scratch directory to home directory 

 

As best practice, we now move the files from the scratch directory, which typically is treated as a temporary space that is not 

backed up in the clusters to our home directory, which typically is backed up and is used to keep or backup important calculation 

results. 

 
$ mkdir ~/PARADIM/HandsOn1 

$ cp *.in ~/PARADIM/HandsOn1 

$ cp *.out ~/PARADIM/HandsOn1 

 

Here we first create the HandsOn1 folder under the PARADIM folder that is located in our home directory ~ . Next we copy 

all the input and output files to this new folder. The asterisk * is a wildcard that selects all the files, e.g., *.in selects all the 

files that ends with .in and they all are copied to the HandsOn1 folder. 

 

We encourage you to follow this practice at the end of each hands-on session. 

 

 

 



Hands-On 2: Convergence and Scaling PARADIM, Cornell, July 23-29, 2023 

Hands-On 2 

Convergence and Scaling 

 
We start the hands-on session by starting an interactive session – only if your previous session has expired –, going to the 

scratch directory and creating and moving into a folder for this session: 

 
$ interact -p defq -n 12 -t 120 

$ cd $SCRATCH 

$ mkdir HandsOn2; cd HandsOn2 

 

Convergence of plane-wave kinetic energy cutoff 

 
It is important to understand the parameters that we are using in our DFT calculations and how those parameters might affect 

the results that we obtain. 

 

Always make sure that the physical observable that you are interested in calculating is converged with respect to the calculation 

parameters. 

 

First of these parameters is the plane-wave kinetic energy cutoff, elec-cutoff. 

 

Let us now copy the input file from the first hands-on session to edit it accordingly: 

 
$ cp ~/PARADIM/HandsOn1/Si.in ./Si_4.in 

 

Using vi, we change the elec-cutoff parameter from 20 to 4 Ha. (Note that 1 Ha = 2 Ry = 27.2114 eV). Now we can run 

this calculation: 

 
$ mpirun -n 4 jdftx < Si_4.in > Si_4.out 2>&1 & 

 

Let us familiarize ourselves with parts of this output file. The first section of the output file prints out all the input variables 

that we have specified as well as the default values that it uses for the variables that are not specified in the input file. We can 

confirm that it parses the plane-wave cutoff as elec-cutoff 4.  

 

It also writes out elec-ex-corr lda-PZ, which means that the exchange and correlation functional that is used here is 

within the local density approximation (LDA) – one of the standard DFT functionals. This is also reprinted later on in the output 

file in detail as well: 

 
---------- Exchange Correlation functional ---------- 

Initalized Slater LDA exchange. 

Initalized Perdew-Zunger LDA correlation.  

 

This choice can be changed by adding this flag into the input file, for example for the Generalized Gradient Approximation 

(GGA) as implemented in the PBE functional [Perdew, Burke, Ernzerhof, PRL 77, 3865 (1996)]: 
elec-ex-corr pbe 

which is the default choice in the JDFTx code. 

 

You can also read that we have 8 electrons in 4 states in our system. This is consistent with the fact that in silicon we have no 

spin-polarization, so each spatial wavefunction describes two electrons (one spin-up and one spin-down). From the Periodic 

Table we know that the silicon atom has 14 electrons. Here we only have the 3s and 3p electrons (4 in total) because the 1s, 2s, 

and 2p electrons (10 in total) are “fused” together with the nucleus inside the pseudopotential. We say that we have 3s and 3p 

valence states, and 1s, 2s, and 2p frozen core states. 

 
nElectrons:   8.000000   nBands: 4 
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After the electronic minimization block, we can read the most important result of this output, that is the total energy of the 

system: 

 
     Etot =       -7.9987538962313174 

 

This is printed out in units of Ha. This value should be taken with caution: it contains an offset that depends on the chosen 

pseudopotentials and on some conventions in the code. This energy is not referred to vacuum (as for example when we solve 

the Schrödinger equation for the hydrogen atom), because there is no vacuum reference when we perform a calculation for an 

infinitely extended crystal. Consequently, the absolute value of DFT total energy in extended solids is not meaningful; what is 

meaningful is any total energy difference, where the artificial offset cancels out. 

 

Finally, you can read the duration of the calculation at the end of the file: 

 
Dumping 'Si.n' ... done 

End date and time: Mon Jul 17 18:26:27 2023  (Duration: 0-0:00:06.85) 

Done! 

 

Repeat the above steps by setting elec-cutoff to 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, 35, 40, 45, 50, 100, 150 in the 

input file. It is convenient to generate separate input/output files and then search for the total energy, duration time of the 

calculation in each output file. For this run we will use 4 CPUs, that is mpirun -n 4 jdftx. 

 

For example, you can collect the results by creating a text file using vi ecut.dat and entering your results one by one. 

You should be able to construct a file looking like this (omitted rows are for you to fill in): 

 
$ more ecut.dat  

4        -7.9987538962313174 

8        -8.0289007040333740 

10       -8.0308303527127407 

12       -8.0312136141785224  

… 

100      -8.0313514221773730 

150      -8.0313562607444382  

 

At this point we can analyze our results. To this end we can proceed in one of two ways: 

 

1. Select the content of the file using the left click of the mouse; open an empty text file in your desktop/laptop; paste the 

selected content using the right click of the mouse. Obviously, this is convenient only when the file consists of a few lines. 

2. Transfer the file exercise1.txt using the command scp or the program filezilla. The syntax for scp on Linux/Mac 

is as follows: 
scp paradim-bpamuk@paradim.arch.jhu.edu:/scratch/paradim/paradim-bpamuk/myfile ./ 

This command transfers the file "myfile" from $SCRATCH to the current directory on the local computer. Mind to 

replace the name "paradim-bpamuk" by your own username.  

 

Once the file is in your desktop/laptop, you can plot the data using your favourite software (e.g. gnuplot, Origin, Excel, etc). 

 

For the total energy you should find something like this (left: full range; right: zoom) 
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The total energy difference between the calculation with plane-wave cutoff of 12 Ha and 150 Ha is < 2 meV/atom, which is 

quite accurate for DFT calculations. Most quantities that can be computed using DFT depend critically on this cutoff, therefore 

we must always perform this test when running DFT calculations. In general, different properties (total energy, equilibrium 

structure, band structures, vibrations, etc.) will exhibit a slightly different convergence behavior, therefore it is very important 

to always check that a given property is converged with respect to the planewaves cutoff. 

 

Since the planewaves cutoff is so important, can we not use a very large value to be on the safe side? 

The answer is that the higher the cutoff, the more time-consuming the calculation. 

 

To confirm the above point, plot the duration of the calculation time vs. the cutoff using the values. 

In this example the runtime is of the order of a few seconds, therefore we can use a very high cutoff without problems. However, 

in most DFT calculations a careful choice of cutoff can save us weeks of computer time. The longer times required for higher 

cutoffs relate to the fact that we are performing linear algebra operations using larger arrays to describe the electron 

wavefunctions. 

 

Note: If you want to plot your data using gnuplot, here is the standard command line: 

 
$ gnuplot 

> plot 'ecut.dat' u 1:2 w lp pt 6 ps 2 lc -1 

 

Here u 1:2 indicates that we want to plot column 1 as x-coordinate and column 2 as y-coordinate. w lp means that we want 

lines and points, pt and ps are the type and size of the points, respectively, and lc -1 sets the line color to black. 

More information about gnuplot can be found at https://gnuplot.sourceforge.net/demo_5.4/simple.html. 

 

Note: If you do not want to change each input file manually, you can use the following bash script to generate the files: 

 
$ cp ~/PARADIM/HandsOn1/Si.in . 

$ more ecut.sh  

#!/bin/bash 

sed "s/20/NEW/g" Si.in > tmp 

 

for DIST in 4 8 10 12 14 16 18 20 22 24 28 30 35 40 45 50 100 150 ; do 

 sed "s/NEW/$DIST/g" tmp > Si_$DIST.in  

echo "mpirun -n 4 jdftx < Si_$DIST.in > Si_$DIST.out" >> job.sh 

done 

$ sh ecut.sh 

$ sbatch job.sh 

 

Furthermore, you can use the command grep to extract the information that you are looking for automatically. For example: 
 

$ grep "Etot =" Si_*out 
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Convergence of Brillouin zone sampling 

 
We now want to explore one other convergence parameter of DFT calculations for crystals, the Brillouin zone sampling 

kpoint-folding. This set of parameters specifies the grid used to discretize the Brillouin zone in reciprocal space. These 

concepts are discussed in theory lectures. 

In the input file Si.in we had requested a uniform sampling of Bloch wavevectors k by setting 

kpoint-folding 8 8 8.  

This means that we want to slice the Brillouin zone in an 8 × 8 × 8 grid, and the default is to center the grid at the Γ point. 

 

So now we expect the code to work with exactly 8 × 8 × 8 = 512 k-vectors. You can see that it uses only 29 k-points instead 

by searching the following block: 

 
Folded 1 k-points by 8x8x8 to 512 k-points. 

 

---------- Setting up k-points, bands, fillings ---------- 

Reduced to 29 k-points under symmetry. 

 

The reason for this difference is that many points in our grid are equivalent by symmetry. The code recognizes these symmetries 

and only performs explicit calculations for the inequivalent points. 

 

Determine how the total energy of silicon varies with the number of k-points, using the same procedure as in previous exercise. 

Consider the following situations for the input parameters: 

 
kpoint-folding 1 1 1/ 2 2 2/ 4 4 4/ 8 8 8/ 16 16 16 

 

For these calculations you can use our ‘converged’ cutoff elec-cutoff = 12 Ha. 

 

In addition, we can shift this grid by half a grid spacing in each direction by adding the following line in the input file: 

 
kpoint 0.5 0.5 0.5 #To offset 

 

This shift is used because it usually provides a better sampling of the Brillouin zone.  

  
Here we can see that by using the 4 × 4 × 4 grid that is shifted by half a grid spacing, we obtain a total energy which is already 

very good, only < 1 meV/atom higher than our best value at the shifted 16 × 16 × 16 grid. We also see that the shifted grid 

converges faster in terms of k-point count than the unshifted grid. 

 

Scaling with the number of processors 

 
The motivation for using parallel computers is that, by splitting the computational tasks among multiple cores, we reduce the 

total execution time. In this exercise we want to check how the execution time depends on the number of cores used during 

parallel execution. 
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Copy a file that has 16 Si atoms corresponding to a 2x2x2 supercell, i.e., computational cells containing multiple primitive 

cells to perform this exercise: 

 
$ cp ~/data/paradim-bpamuk/Si_16.in . 

 

Using the input file Si_16.in, corresponding to a supercell with 16 silicon atoms, determine the CPU time required to 

perform run a calculation as a function of the number of cores. To this aim you will need  

 

(i) to execute 
$ mpirun -n  1 jdftx < Si_16.in > Si_16.out 2>&1 & 

$ mpirun -n  2 jdftx < Si_16.in > Si_16.out 2>&1 & 

$ … 

$ mpirun -n 24 jdftx < Si_16.in > Si_16.out 2>&1 & 

 

(ii) to find the CPU time at the end of the output file and collect the data in a table. 

 

Plot the parallel speedup factor for the previous calculation. The parallel speedup is defined as follows: 

 

speedup(𝑛) =
CPU time for 1 core

CPU time for 𝑛 cores
 

 

A hypothetical software, perfectly parallelized, should exhibit a speedup equal to the number of cores: 

 

ideal speedup(𝑛) = 𝑛 

 

Plot the speedup of the previous set of calculations and compare your data with the ideal speedup. What do you think is 

happening here? 

 

We finish the session by copying the important files that we would like to keep from scratch to home directory: 

 
$ mkdir ~/PARADIM/HandsOn2 

$ cp Si*.in ~/PARADIM/HandsOn2 

$ cp Si*.out ~/PARADIM/HandsOn2 
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Hands-On 3 

Equilibrium Structures 

 
We start the hands-on session by going to the scratch directory and creating and moving into a folder for this session: 

 
$ cd $SCRATCH 

$ mkdir HandsOn3; cd HandsOn3 

 

Equilibrium structure of a diatomic molecule 
 

In this exercise we want to obtain the equilibrium structure which gives us the optimal bond length of a diatomic distance, i.e. 

distance between the two atoms. The main rule that we will follow in this hands-on session is: 

 

Among all possible structures, the equilibrium structure at zero temperature and zero pressure is found by minimizing the DFT 

total energy. 

 

The DFT total energy can be obtained by grep "Etot =" *.out as we practiced in the previous hands-on session. This 

quantity includes all the terms appearing in the electron-ion Hamiltonian, except the kinetic energy of the ions, therefore it is 

also referred to as the potential energy surface. 

 

Today we will calculate the equilibrium structure of the Cl2 molecule. It has only 2 atoms, where the structure is specified by 

the distance between the two atoms, so our goal is to find the Cl-Cl distance with the lowest total energy. 

 

First, we copy an input file from the first hands-on session that we saved under the related folder in our home directory to here 

donated by a dot .  

 
$ cp ~/PARADIM/HandsOn1/Si.in ./Cl2.in 

$ cp $SCRATCH/HandsOn1/job.sh . 

 

Then using vi, we can edit the input file such that: 

 
$ more Cl2.in  

lattice Cubic 20 

 

coords-type cartesian   #Coordinates in terms of absolute atom position in Bohr 

ion Cl 0.00 0.00 0.00  0    

ion Cl 2.00 0.00 0.00  0    

 

kpoint-folding 1 1 1 #Gamma-centered by default 

 

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-ex-corr lda 

elec-cutoff 50 200   #Plane-wave KE cutoff for wfcn and charge density in Ha 

electronic-SCF       #Perform a Self-Consistent Field optimization 

 

dump-name Cl2.$VAR   #Prefix for the output files 

dump End ElecDensity #Write out the final electronic charge density 

 

We want to put two atoms in a cubic box with side length of 20 Bohr. As the periodic boundary conditions apply in all our DFT 

simulations, we want to make sure that the box size is large enough that our molecule does not see the effects of its periodic 

image. For this purpose, I also encourage you to investigate the effects of Coulomb truncation commands to your results in the 

future, which we will ignore for simplicity today. 
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We also switch the coordinate type to Cartesian so that the two Cl atoms are 2 Bohr apart. Because we do not want to study an 

extended crystal, we do not need Brillouin zone sampling, therefore we also set the k-point folding to include the Γ point only. 

 

Now we can run our calculation by editing number of processors in the job.sh file: 

 
#SBATCH --ntasks-per-node=6     #number of cores/tasks per node 

… 

mpirun -n 6 jdftx < Cl2.in > Cl2.out  

 

Please verify the convergence of the plane-wave cutoff of 50 Ha is reasonable as compared to the most converged value that 

you can computationally afford. Make a plot of the total energy vs. plane-wave cutoff. 

 

By observing the output file, we can see the convergence steps of the DFT self-consistent field cycle (SCF). If we look for the 

total energy in the output file: 

 
$ grep Etot Cl2.out  
LCAOMinimize: Iter:   0  Etot: -26.7999507131258454  |grad|_K:  1.758e-02  alpha:  1.000e+00 

LCAOMinimize: Iter:   1  Etot: -26.8115931446286595  |grad|_K:  1.050e-03  alpha:  9.170e-01  linmin:  4.143e-01  cgtest: -1.010e+00  t[s]:     

22.06 

LCAOMinimize: Iter:   2  Etot: -26.8115931446286808  |grad|_K:  1.050e-03  alpha:  0.000e+00 

LCAOMinimize: Iter:   3  Etot: -26.8116317816717746  |grad|_K:  5.561e-06  alpha:  8.645e-01  linmin:  2.231e-01  cgtest: -6.188e-01  t[s]:     

27.93 

SCF: Cycle:  0   Etot: -27.618276626028706   dEtot: -8.066e-01   |Residual|: 6.927e-01   |deigs|: 1.554e-01  t[s]:     34.87 

SCF: Cycle:  1   Etot: -27.817177035870156   dEtot: -1.989e-01   |Residual|: 4.111e-01   |deigs|: 1.436e-01  t[s]:     39.67 

SCF: Cycle:  2   Etot: -27.906651259454044   dEtot: -8.947e-02   |Residual|: 2.385e-01   |deigs|: 1.615e-01  t[s]:     44.61 

SCF: Cycle:  3   Etot: -27.941935603798274   dEtot: -3.528e-02   |Residual|: 8.845e-02   |deigs|: 8.294e-02  t[s]:     49.54 

SCF: Cycle:  4   Etot: -27.942100204403772   dEtot: -1.646e-04   |Residual|: 6.611e-02   |deigs|: 5.763e-03  t[s]:     54.61 

SCF: Cycle:  5   Etot: -27.945675282462226   dEtot: -3.575e-03   |Residual|: 8.895e-03   |deigs|: 2.093e-02  t[s]:     59.67 

SCF: Cycle:  6   Etot: -27.945830819223662   dEtot: -1.555e-04   |Residual|: 3.733e-03   |deigs|: 2.618e-03  t[s]:     64.77 

SCF: Cycle:  7   Etot: -27.945888859541178   dEtot: -5.804e-05   |Residual|: 3.493e-03   |deigs|: 1.860e-03  t[s]:     69.94 

SCF: Cycle:  8   Etot: -27.945931904173406   dEtot: -4.304e-05   |Residual|: 4.054e-03   |deigs|: 8.621e-05  t[s]:     75.12 

SCF: Cycle:  9   Etot: -27.945962861113699   dEtot: -3.096e-05   |Residual|: 1.658e-03   |deigs|: 1.207e-03  t[s]:     80.39 

SCF: Cycle: 10   Etot: -27.945965306855040   dEtot: -2.446e-06   |Residual|: 2.765e-03   |deigs|: 7.970e-04  t[s]:     85.65 

SCF: Cycle: 11   Etot: -27.945971180472732   dEtot: -5.874e-06   |Residual|: 1.066e-03   |deigs|: 3.148e-04  t[s]:     90.80 

SCF: Cycle: 12   Etot: -27.945972026058925   dEtot: -8.456e-07   |Residual|: 1.231e-03   |deigs|: 1.076e-04  t[s]:     94.83 

SCF: Cycle: 13   Etot: -27.945973820902012   dEtot: -1.795e-06   |Residual|: 4.770e-04   |deigs|: 9.368e-05  t[s]:    100.07 

SCF: Cycle: 14   Etot: -27.945974611120008   dEtot: -7.902e-07   |Residual|: 2.921e-04   |deigs|: 3.258e-05  t[s]:    105.28 

SCF: Cycle: 15   Etot: -27.945974885247029   dEtot: -2.741e-07   |Residual|: 1.123e-03   |deigs|: 1.379e-04  t[s]:    110.54 

SCF: Cycle: 16   Etot: -27.945975674865501   dEtot: -7.896e-07   |Residual|: 3.014e-04   |deigs|: 1.183e-04  t[s]:    115.73 

SCF: Cycle: 17   Etot: -27.945975801762874   dEtot: -1.269e-07   |Residual|: 3.535e-04   |deigs|: 6.276e-05  t[s]:    119.69 

SCF: Cycle: 18   Etot: -27.945976053908772   dEtot: -2.521e-07   |Residual|: 1.619e-04   |deigs|: 3.425e-05  t[s]:    125.01 

SCF: Cycle: 19   Etot: -27.945976214383766   dEtot: -1.605e-07   |Residual|: 7.829e-05   |deigs|: 2.943e-05  t[s]:    130.11 

SCF: Cycle: 20   Etot: -27.945976312934050   dEtot: -9.855e-08   |Residual|: 9.360e-05   |deigs|: 1.934e-05  t[s]:    135.36 

SCF: Cycle: 21   Etot: -27.945976380262934   dEtot: -6.733e-08   |Residual|: 1.996e-05   |deigs|: 1.147e-05  t[s]:    140.62 

SCF: Cycle: 22   Etot: -27.945976423736674   dEtot: -4.347e-08   |Residual|: 1.119e-05   |deigs|: 1.861e-06  t[s]:    145.81 

SCF: Cycle: 23   Etot: -27.945976454876423   dEtot: -3.114e-08   |Residual|: 1.718e-05   |deigs|: 1.219e-06  t[s]:    150.98 

SCF: Cycle: 24   Etot: -27.945976475886951   dEtot: -2.101e-08   |Residual|: 1.190e-05   |deigs|: 1.132e-06  t[s]:    156.29 

SCF: Cycle: 25   Etot: -27.945976488881126   dEtot: -1.299e-08   |Residual|: 1.099e-05   |deigs|: 8.725e-07  t[s]:    161.59 

SCF: Cycle: 26   Etot: -27.945976497116902   dEtot: -8.236e-09   |Residual|: 1.958e-05   |deigs|: 9.065e-07  t[s]:    166.86 

SCF: Cycle: 27   Etot: -27.945976502488286   dEtot: -5.371e-09   |Residual|: 1.248e-05   |deigs|: 3.219e-06  t[s]:    172.13 

     Etot =      -27.9459765024882856 

IonicMinimize: Iter:   0  Etot: -27.945976502488286  |grad|_K:  0.000e+00  t[s]:    174.27 

 

Note the command electronic-scf, which uses a different algorithm from the “variational minimize” to solve the Kohn-

Sham equations. Essentially, Kohn-Sham eigenvalues and orbitals are calculated for an input potential, and a new density and 

potential are constructed from those orbitals. This output potential would in general be different from the input one, so the 

above step is repeated with successive guesses for the input potential until the input and output potentials become identical 

(within some threshold). In practice, the guess for the input potential at one step is based on input and output potentials from 

several previous steps (Pulay algorithm). Note that whether we used SCF or Minimize is not important for the remainder of 

this tutorial; we can interchangeably use both algorithms for total energy calculations. 

 

We see that the energy reaches its minimum in 27 iterations. It also shows that it stops when the energy difference between the 

last two iterations is less than 1e-09 Ha. If more accurate calculations are needed, you can lower this convergence tolerance 

using the keywords in the input file:  

 
electronic-scf energyDiffThreshold 1e-09 

 

Now we can change the bond length between the atoms and check how the total energy changes. We can use a bash script to 

automate the procedure: 
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$ cat > bl.sh << EOF 

#!/bin/bash 

sed "s/2.00/NEW/g" Cl2.in > tmp 

for DIST in 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6; do 

    sed "s/NEW/\$DIST/g" tmp > Cl2_\$DIST.in  

    echo "mpirun -n 6 jdftx < Cl2_\$DIST.in > Cl2_\$DIST.out " >> job.sh 

done 

EOF 

$ sh bl.sh 

 

This script creates multiple input files where only the coordinate of the second atom is changed: 

 
$ ls Cl2_* 

Cl2_2.2.in  Cl2_2.4.in  Cl2_2.6.in  Cl2_2.8.in  Cl2_3.0.in  Cl2_3.2.in  Cl2_3.4.in  Cl2_3.6.in  

Cl2_3.8.in  Cl2_4.0.in  Cl2_4.2.in  Cl2_4.4.in  Cl2_4.6.in 

 

Now we are ready to run the jobs for each of these input files, by adding the following at the end of our job.sh file: 

 
mpirun -n 6 jdftx < Cl2_2.2.in > Cl2_2.2.out  

… 

mpirun -n 6 jdftx < Cl2_4.6.in > Cl2_4.6.out  

 

Once the calculations are done, we can look at the total energy from the output files: 

 
$ grep "Etot =" Cl2*.out  

Cl2_2.2.out:     Etot =      -28.8304694768322562 

Cl2_2.4.out:     Etot =      -29.3710699724625286 

… 

Cl2_4.6.out:     Etot =      - 30.0869920854358561 

 

Plot the total energy as a function of Cl-Cl bond length as shown below: 

 

 
 

In this plot the dots are the calculated datapoints, and the line is a spline interpolation. In gnuplot this interpolation is obtained 

using the flag smooth csplines at the end of the plot command. 

 

By zooming into this figure, we find that the minimum is located at 3.743 Bohr = 1.98 Å for the bond length. The calculated 

bond length is slightly shorter than the measured value of 1.99 Å. 
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• Repeat this exercise using a plane-wave cutoff of 5 Ha instead of 50 Ha. Note that you need to converge the observable 

that you are interested in calculating in terms of these parameters. 

 

Binding energy of a diatomic molecule 
 

The total energy of Cl2 at the equilibrium structure can be used to calculate the binding (or dissociation) energy of this molecule: 

 

𝐸bind = 𝐸Cl2 − 2𝐸Cl 

 

where 𝐸Cl is the total energy of an isolated Cl atom and 𝐸Cl2 is the total energy of the diatomic molecule, each of which can be 

calculated with DFT. 

 

First, we need to repeat the calculation from the previous section with the correct Cl-Cl bond length in the input file to obtain 

the total energy of the diatomic molecule, 𝐸Cl2. For this, we need to edit the input file such that the atomic position of the second 

atom is the optimal bond length we have calculated in the previous section: 

 
coords-type cartesian   #Coordinates in terms of absolute atom position in Bohr 

ion Cl 0.000 0.00 0.00  0    

ion Cl 3.743 0.00 0.00  0    

 

This calculation gives the following total energy: 𝐸Cl2 = −30.127 Ha. 

 

Next, we calculate the total energy of the isolated atom, 𝐸Cl. An important detail here is to notice that the outermost electronic 

shell of Cl has one unpaired electron, which is also referred to as an open-shell system: 

 
To take this into account, we need to do a spin-polarized calculation by including the following in the input file: 

 
$ cat > Cl.in << EOF 

lattice Cubic 20 

   

coords-type cartesian    #Coordinates in terms of absolute atom position in Bohr 

ion Cl 0.00 0.00 0.00  0    

 

kpoint-folding 1 1 1 #Gamma-centered by default 

 

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/\$ID_lda.uspp 

elec-ex-corr lda 

elec-cutoff 50 200  #Plane-wave KE cutoff for wfcn and charge density in Ha 

electronic-SCF      #Perform a Self-Consistent Field optimization 

spintype z-spin                    #z-spin = up/dn polarization (non-relativistic spin) 

elec-initial-magnetization +1 yes  #yes = hold magnetization fixed, no = optimize it 

 

dump-name Cl.\$VAR    #output file name 

dump End ElecDensity #what you would like it to output 

EOF 

 

The keyword spintype z-spin tells the code to differentiate between the number electrons with up and down spin. The 

keyword elec-initial-magnetization +1 yes tells the code that we want 1 unpaired electron, and all other orbitals are 

doubly occupied. 

 

This calculation gives the following total energy: 𝐸Cl = −14.998 Ha. 

 

Using these two results, we get: 𝐸bind = 0.131 Ha = 3.57 eV. 

 

This result should be compared to the experimental value of 2.51 eV from  
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https://en.wikipedia.org/wiki/Bond-dissociation_energy. 

We can see that DFT/LDA overestimates the dissociation energy of Cl2 by about 1.1 eV (the calculated value is about 42% 

higher than in experiments): interatomic bonding is too strong in LDA. 

 

Equilibrium structure of a bulk crystal 
 

In this section, we want to repeat what we have learned for a bulk crystal. We again consider the silicon crystal from the first 

hands-on session: 

 
cp ~/PARADIM/HandsOn1/Si.in . 

 

and we will use the converged parameters for planewaves cutoff and Brillouin-zone sampling that we have calculated in the 

second hands-on session: 

 
$ cat > Si.in << EOF 

lattice face-centered Cubic 5.43 

latt-scale 1.88973 1.88973 1.88973  #Convert lattice vectors from Angstroms to bohrs 

 

coords-type lattice        #Specify atom coordinates in terms of the lattice vectors (fractional 

coordinates) 

ion Si 0.00 0.00 0.00  0   #This covers the vertex and face centers of the cube 

ion Si 0.25 0.25 0.25  0   #This covers the half-cell body centers 

 

kpoint-folding 4 4 4  #Gamma-centered by default 

kpoint 0.5 0.5 0.5    #To offset 

 

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/\$ID_lda.uspp 

elec-cutoff 12  #wavefcn (density) cutoff Ha 

elec-ex-corr lda 

electronic-SCF       #Perform a Self-Consistent Field optimization 

 

dump-name Si.\$VAR   #output file name 

dump End ElecDensity #what you would like it to output 

EOF 

 

In the case of bulk crystals, we often have information about the structure from XRD measurements. This information simplifies 

considerably the determination of the equilibrium structure. For example, in the case of silicon, the diamond structure is 

uniquely determined by the lattice parameter a, therefore the minimization of the total energy is really a one-dimensional 

optimization problem. This situation is therefore similar to the case of the Cl2 molecule, where we optimized only one 

parameter, the bond length. 

 

https://en.wikipedia.org/wiki/Monocrystalline_silicon  

 

Later on, we will explore the slightly more complicated situation where we need to decide which one among several possible 

crystal structures is the most stable. 

 

To find the equilibrium lattice parameter of silicon we perform total energy calculations for a series of plausible parameters. 

We can generate multiple input files at once by using the following script: 

 
$ cp job.sh job_Si.sh 

Edit the end to remove the Cl-related lines of the job script first. 

 
$ cat > alat.sh << EOF 

#!/bin/bash 

sed "s/5.43/ALAT/g" Si.in > tmp 

for ALAT in 5.20 5.25 5.30 5.35 5.40 5.45 5.50 5.55 5.60 5.65; do 



Hands-On 3: Equilibrium Structures PARADIM, Cornell, July 23-29, 2023 

    sed "s/ALAT/\$ALAT/g" tmp > Si_\$ALAT.in  

    echo "mpirun -n 6 jdftx < Si_\$ALAT.in > Si_\$ALAT.out " >> job_Si.sh 

done 

EOF 

$ sh alat.sh 

 

Now we can run each of these calculations by adding the following at the end of the job.sh script: 

 
mpirun -n 6 jdftx < Si_5.30.in > Si_5.30.out  

… 

mpirun -n 6 jdftx < Si_5.65.in > Si_5.65.out  

 

After executing these calculations, we can obtain the total energy of each calculation: 

 
$ grep "Etot =" Si_*.out 

Si_5.25.out:     Etot =       -8.0280374478534409 

… 

Si_5.65.out:     Etot =       -8.0241794300053506 

 

When you plot the total energy as a function of lattice parameter, 

 

  
 

you can zoom into the minimum of the plot to find that the equilibrium lattice parameter is 𝑎 = 5.4 Å. Our calculated value is 

close to the experimental value of 5.43 Å, but DFT/LDA underestimates the measured lattice constant. 

 

Cohesive energy of a bulk crystal 
 

The cohesive energy is defined as the heat of sublimation of a solid into its elements. This quantity is the solid-state counterpart 

of the molecular dissociation energy that we have seen for Cl2. It quantifies how much energy is needed to break a solid into a 

set of isolated atoms. 

The calculation is almost identical to the case of the dissociation energy of the Cl2 molecule: we need to take the difference 

between the total energy at the equilibrium lattice parameter and the total energy of each atom in isolation. 

 

For the energy at equilibrium, we just repeat a calculation from the previous exercise, but this time using the equilibrium lattice 

parameter just determined: 

 
lattice face-centered Cubic 5.4 

 

This calculation yields: 

 

𝐸bulk = 8.031 Ha   

 

(This is the total energy per unit cell, and each unit cell contains 2 Si atoms) 
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To determine the total energy of one Si atom in isolation we consider a cubic box with a large lattice parameter and one Si 

atom, as we did for the Cl atom. 

In this case we need to consider that Si has 4 valence electrons in the configuration 3s2p2. According to Hund’s rules the spins 

in the p shell must be arranged as follows: 

 
 
$ cat > silicon.in << EOF 

lattice face-centered Cubic 10 

latt-scale 1.88973 1.88973 1.88973  #Convert lattice vectors from Angstroms to bohrs 

 

coords-type lattice        #Specify atom coordinates in terms of the lattice vectors (fractional 

coordinates) 

ion Si 0.00 0.00 0.00  0    

 

kpoint-folding 1 1 1  #Gamma-centered by default 

  

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/\$ID_lda.uspp 

elec-cutoff 12  #wavefcn (density) cutoff Ha 

elec-ex-corr lda 

electronic-SCF       #Perform a Self-Consistent Field optimization 

spintype z-spin                   #z-spin = up/dn polarization (non-relativistic spin) 

elec-initial-magnetization 2 yes  #yes = hold magnetization fixed, no = optimize it 

 

dump-name Si.\$VAR   #output file name 

dump End ElecDensity #what you would like it to output 

EOF 

 

Here the input variable elec-initial-magnetization 2 yes is used to request that the code finds the lowest energy 

electronic configuration with two electron spins pointing in the same direction, and all other electrons occupy the remaining 

orbitals in pairs for up and down spin. 

The calculation for the isolated atom gives: 

 

𝐸Si = 3.815 Ha  

 

By combining the last two results we obtain: 

 

𝐸cohes =
𝐸bulk−2𝐸Si

2
= 0.200 Ha = 5.454 eV 

 

Note that we divide by 2 since there are 2 Si atoms in each crystal unit cell, so that this quantity gives the cohesive energy per 

atom. 

 

The measured heat of sublimation of silicon is 4.62 eV, therefore our DFT/LDA calculation overestimates the experimental 

value by 14%. 

 
The underestimation of lattice parameters and the overestimation of cohesive energies are typical of DFT/LDA. We can 

summarize these observations by stating that DFT/LDA tends to overbind molecules and solids. 

 

Note: While the DFT/LDA tends to overbind, another extremely popular approximation to the exchange and correlation 

functional, the PBE functional tends to underbind. For example, DFT/PBE usually yields lattice parameter slightly larger than 

in experiments (~1%). 

 

We finish the session by copying the important files that we would like to keep from scratch to home directory: 

 
$ mkdir ~/PARADIM/HandsOn3 
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$ cp *.in ~/PARADIM/HandsOn3 

$ cp *.out ~/PARADIM/HandsOn3 

$ cp *.sh ~/PARADIM/HandsOn3 
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Hands-On 4 

Layered Systems and Visualization 

 
We start the hands-on session by going to the scratch directory, and creating and moving into a folder for this session: 

 
$ cd $SCRATCH 

$ mkdir HandsOn4; cd HandsOn4 

 

Equilibrium structure of diamond 

 
The crystal structure of diamond is almost identical to the one that we used for silicon in HandsOn03. The two important 

differences are (i) this time we need a pseudopotential for diamond, and (ii) we expect the equilibrium lattice parameter to be 

considerably smaller than in silicon. 

 

• Create an input file for diamond, diamond.in, by modifying the input file Si.in from HandsOn03. For the time being we 

can set the lattice parameter to the experimental value, 3.56 Å. 

 

• Calculate the total energy as a function of plane-wave cutoff and plot your data. 

You can generate the input files for various cutoff energies manually, or by using the following script (adapted from HandsOn3): 

 
$ cat > loop-diamond.sh << EOF 

#!/bin/bash 

for ECUTWFC in 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 90 100 150 200; do 

    sed "s/12/\$ECUTWFC/g" diamond.in > diamond_\$ECUTWFC.in  

done 

EOF 

$ sh loop-diamond.sh 

 

• Determine the planewaves cutoff that is required to have the total energy per atom converged to within 25 meV. We can 

take as ‘exact’ result the value for the highest cutoff considered, 200 Ha. 

 

• Using the planewaves cutoff determined in the previous step, calculate the total energy of diamond as a function of lattice 

parameter and plot your data. 

 

• Determine the equilibrium lattice parameter of diamond and compare your result with the experimental value. 

 

• Using the equilibrium lattice parameter determined in the previous exercise, calculate the cohesive energy of diamond, and 

compare your value with experiments. For this calculation we use the same strategy employed in HandsOn03 for silicon. 

The C atom in its ground state has a valence electronic configuration: therefore, we need to run 

a spin-polarized calculation. 

 

• Compare your calculated cohesive energy of diamond with the experimental value, 7.37 eV. 

 

• Plot the cohesive energy vs. volume/atom for all the lattice parameters that you considered. Use units of eV for the energy, 

and Å3 for the volume. The volume of the unit cell in each calculation can be found in the output file, next to the keyword: 

"unit cell volume =" . You can try using grep as in previous exercises. 

As a reference, the plot should look like:  
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Equilibrium structure of graphite 

 
In this exercise we study the equilibrium structure of graphite. We consider the structure of graphite in the Bernal stacking 

(AB), as obtained from solid state physics textbooks or online databases (we will discuss databases in the following classes): 

 

https://en.wikipedia.org/wiki/Graphite  

 

The unit cell of graphite is hexagonal, with lattice vectors: 

𝑎1 = (
𝑎2 = (
𝑎3 = (

𝑎 0 0)

−𝑎/2 𝑎√3/2 0)
0 0 𝑐)

 

(𝑎 =2.464 Å and 𝑐 = 6.712 Å), and with 4 C atoms per primitive unit cell, with fractional coordinates: 
C1 = (
C2 = (

    0    0  1/4)
    0    0  3/4)

 

C3 = (
C4 = (

1/3 2/3 1/4)
2/3 1/3 3/4)

 

• Starting from the input file that you used for diamond in the previous exercise, build an input file for calculating the total 

energy of graphite, using the experimental crystal structure given above. 

Here you will need to pay attention to the keyword lattice in the input file. Search for these entries in the documentation 

page: 

 
http://jdftx.org/CommandLattice.html 

 

Based on this information we must use:  

 
lattice Hexagonal 4.6562852 12.683842 

 

and the above atomic coordinates with the fractional coordinates with the input keyword: 

 
coords-type lattice 

 

As a sanity check, if you run a calculation with elec-cutoff 50 Ha and kpoint-folding 1 1 1 you should obtain 

a total energy of -22.429 Ha. 

 

• After performing convergence test with respect to the number of k-points, I found that the total energy is converged to 4 

meV/atom when using a shifted 6 x 6 x 2 grid, that is: 
kpoint-folding 6 6 2  #Gamma-centered by default 

kpoint 0.5 0.5 0.5    #To offset 
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Using this setup for the Brillouin-zone sampling, calculate the lattice parameters of graphite 𝑎 and 𝑐 at equilibrium. Note that 

this requires a minimization of the total energy in a two-dimensional parameter space. 

 

For this calculation it is convenient to automatically generate input files as follows, assuming that your input file is called 

graphite-tmp.in and a job submission file job-tmp.sh : 

 

• Replace the two values for lattice Hexagonal 4.6562852 12.683842 by the placeholders ALAT and CLAT, 

respectively. 

 

• Rename the input and output file names in the job-tmp.sh file:  
mpirun -n 4 jdftx < graphite-ALAT-CLAT.in > graphite-ALAT-CLAT.out  

 

• Create a script graphite.sh with the following content: 

 
#!/bin/bash 

for A in 4.4 4.5 4.6 4.7 4.8 4.9 5.0; do 

   for CBYA in 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90; do 

       C=`echo $A $CBYA | awk '{printf("%5.3f"), $1*$2}'` 

       sed "s/ALAT/$A/g" graphite-tmp.in > tmp 

       sed "s/CLAT/$C/g" tmp > graphite-$A-$CBYA.in 

       sed "s/ALAT/$A/g" job-tmp.sh > jobtmp 

       sed "s/CLAT/$CBYA/g" jobtmp > job-$A-$C.sh 

       sbatch job-$A-$C.sh 

    done 

done 

 

• By running sh graphite.sh you will be able to generate input files for all these combinations of 𝑎 and 𝑐, execute 

jdftx for each file, and store the output in the corresponding .out files. Note that this will produce 7 x 9 = 63 input files, 

but the total execution time on 4 cores should be no more than a few minutes. 

 

• At the end you will be able to extract the total energies by using 

 
grep "Etot =" graphite-*-*.out > graphite.txt 

 

If you plot the total energies that you obtained as a function of 𝑎 and 𝑐/𝑎, (we suggest this for the splines function of the 

gnuplot to work properly), you should be able to get something like the following: 

 

 
 

This plot was generated using the following commands in gnuplot (the file graphite.txt must first be cleaned up in order to 

obtain only three columns with the values of 𝑎, 𝑐/𝑎, and energy): 
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set dgrid3d splines 1000,1000 

set pm3d map 

splot [] [] [:-22.93] "graphite.txt" 

 

The ‘splines’ keyword provides a smooth interpolation between our discrete set of datapoints. The plotting range along the 

energy axis is restricted in order to highlight the location of the energy minimum.  

 

Here we see that the energy minimum is very shallow along the direction of the 𝑐 lattice parameter, while it is very deep along 

the direction of the lattice parameter 𝑎. This corresponds to the intuitive notion that the bonding in graphite is very strong 

within the carbon planes, and very weak in between planes. 

 

By zooming in a plot like the one above you should be able to find the following equilibrium lattice parameters: 

 

calculation: 𝑎 = 2.443 Å and 𝑐 = 6.677 Å with 𝑐/𝑎 = 2.733    

 

to be compared with the experimental values: 

 

experiment: 𝑎 = 2.464 Å and 𝑐 = 6.712 Å with  𝑐/𝑎 = 2.724    

 

From these calculations we can see that the agreement between DFT/LDA and experiments for the structure of graphite is 

excellent. This result, however, is somewhat an artifact: most DFT functionals generally overestimate the interlayer distance in 

graphite due to the inadequate description of van der Waals correlation effect; since LDA generally tends to overbind (as we 

have seen in all examples considered so far), this overbinding compensates for the lack of van der Waals interactions, and the 

cancellation of errors leads to a good agreement with experiment. 

 

 

Visualization of crystal structures 
 

In this exercise, we want to see how the structure of graphite that we have in our output file looks like in a ball-and-stick model. 

Let us assume that we have run a calculation with our converged lattice parameters with the output name: graphite-4.617-
2.734.out 

 

Using jdftx script: createXSF, we can first convert the output file to .xsf file: 

 
$ createXSF graphite-4.617-2.734.out graphite.xsf 

 

We will do the visualization on our local computer. For this, scp the graphite.xsf file to your computer: 

 
$ scp paradim-bpamuk@paradim.arch.jhu.edu:/scratch/paradim/paradim-

bpamuk/HandsOn4/graphite.xsf . 

 

The software xcryden can open files with the XSF format to visualize the atomistic structures. General info about this project 

can be found at  

http://www.xcrysden.org. 

 

We launch xcryden on the local desktop by typing: 

 
$ xcrysden 

 

The user interface is very simple and intuitive. The following snapshots will help you to get started with the visualization. 
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Another software that you might want to consider for rendering structures is Vesta. In order to install Vesta on your 

desktop/laptop, you can visit the following page: 

https://jp-minerals.org/vesta/en/download.html  

 

Once installed, you can simply load the xsf file by File → Open → Select graphite.xsf file: 
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As an exercise, in Vesta, go to: 

Edit → Edit Data → Unit cell → Transform 

and generate a 3x3x1 supercell of graphite as we did with xcrysden. 

 

Diamond vs. graphite 
 

• Calculate the cohesive energy per atom of diamond and graphite, using the optimized lattice parameters as determined in 

the previous exercises. 

• Based on your calculations, which carbon allotrope is more stable at ambient conditions, diamond or graphite? 

• Compare your result with experiments by looking up online the cohesive energies of diamond and graphite, e.g., from: 

https://doi.org/10.1063/1.4867544  
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Hands-On 5 

Automatic Structure Optimization 

 
We start the hands-on session by going to the scratch directory, and creating and moving into a folder for this session: 
 

$ cd $SCRATCH 

$ mkdir HandsOn5; cd HandsOn5 

 

In this session we will learn how to find the ground-state structure using automatic optimization of atomic coordinates and 

crystal lattice. 

 

Automatic optimization of atomic coordinates 

 
In Hands-On 3 we discussed how to calculate the potential energy surface of a molecule, and how to determine equilibrium 

structures by locating the minima of that surface. In this section we consider an alternative route for finding the equilibrium 

geometry of Cl2. 

 

Now let us look at the documentation page for the JDFTx website. Under the input file documentation, we find the ionic-

minimize command: 

 

 
 

 

Now we add the ionic-minimize command at the end of our input file. In principle we could perform calculations without 

specifying these parameters; in this case the code will use some preset default values. For the sake of completeness let us 

specify some rather stringent criteria in the input file: 

 
ionic-minimize \ 

    nIterations 10 \ 

    energyDiffThreshold 1e-6 \ 

    knormThreshold 1e-4  #Threshold on RMS cartesian force 

 

which tells the code that we want 10 iterations of the atomic positions as well as the threshold on the total energy convergence 

and atomic forces. Note that one of the default values of ionic-minimize (and lattice-minimize) is 

"nIterations 0 \". So, it will end up simply doing a total energy calculation unless otherwise specified. 

 

This choice instructs to automatically determine the equilibrium structure, starting from the given coordinates. In practice the 

code calculates the forces acting on the ions and updates the ionic positions in such a way as to minimize those forces. The 

equilibrium configuration will correspond to the situation where all forces are smaller than a given threshold, and where the 

total potential energy has changed less than a given threshold with respect to the previous iteration. 

 

As a starting point for the atomic coordinates let us use a very large Cl-Cl separation: 
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coords-type cartesian      #Specify atom coordinates in terms of absolute atom position 

in Bohr 

ion Cl 0.00 0.00 0.00  1 

ion Cl 5.00 0.00 0.00  1 

 

The label 1 at the end of the atomic coordinates instructs the code to let the atoms move, while 0 does not allow the movement 

of the atoms. 

 

Let us also ask the code to print out the converged atomic positions and other things that we might need to restart the calculation 

into separate files: 

 
dump End State       #Output State i.e. everything needed to resume the calculation   

 

which will create the Cl2.ionpos file with the information of the final atomic coordinates after 10 iterations. 

 

Now we can run the calculation with the following edits in the job script file: 

 
… 

#SBATCH --ntasks-per-node=6     #number of cores/tasks per node 

… 

mpirun -n 6 jdftx < Cl2.in > Cl2.out  

 

While the calculation is running, you can check the output file with the following command: 

 
$ tail -f Cl2.out 

 

The command tail shows you the last 10 lines of any text file. By using the flag -f this command ‘follows’ the file, so it 

keeps printing the lines whenever the file is modified. 

 

In order to search for a word in vi we simply press / and type the word. We search for ‘Forces’ and obtain: 
# Forces in Cartesian coordinates: 

force Cl   0.061674768915473  -0.000000000000000   0.000000000000000 1 

force Cl  -0.061674768915473  -0.000000000000000   0.000000000000000 1 

 

These lines are telling us that, in the initial configuration, the two Cl atoms experience forces directed along the Cl-Cl axis and 

pointing towards the other Cl atom. This was to be expected since we started with the atoms at a distance much larger than the 

equilibrium bond length. In vi, when we hit n to search for the “next” occurrences of the “Forces”, we find the updated atomic 

positions for the next iteration and the forces on the atoms at this new position: 

 
# Ionic positions in cartesian coordinates: 

ion Cl   0.431723382408312   0.000000000000000   0.000000000000000 1 

ion Cl   4.568276617591688   0.000000000000000   0.000000000000000 1 

 

# Forces in Cartesian coordinates: 

force Cl   0.051560049348982  -0.000000000000000   0.000000000000000 1 

force Cl  -0.051560049348981   0.000000000000000   0.000000000000000 1 

 

Clearly the atoms are being displaced towards each other. At the end of the iterations, we can see something like the following: 

 
# Ionic positions in cartesian coordinates: 

ion Cl   0.628583764855240   0.000000000000000   0.000000000000000 1 

ion Cl   4.371416235144760   0.000000000000000   0.000000000000000 1 

 

# Forces in Cartesian coordinates: 

force Cl  -0.000049475558772  -0.000000000000000   0.000000000000000 1 

force Cl   0.000049475558770   0.000000000000000   0.000000000000000 1 
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Here we see that the forces are practically vanishing, therefore we reached the equilibrium configuration. The total energy at 

equilibrium is -30.1274486305767333 Ha and the bond length is 3.743 Bohr = 1.98 Å. These values are in agreement with 

what we had found in HandsOn3 by explicitly looking for the minimum of the potential energy surface. 

 

If we want to see how the atomic coordinates evolved towards the equilibrium configuration, we can simply issue: 

 
$ grep "ion Cl" Cl2.out 

 

From the atomic positions at each iteration, determine the Cl-Cl distance in Å and plot the distance vs. iteration number. You 

should obtain something like the following: 

 

 
 

Automatic optimization of atomic coordinates and unit cell 

 
In addition to the optimization of atomic coordinates, it is also possible to optimize the vectors of the primitive unit cell. In 

order to simplify life in the later stages of this calculation, we modify the input file such that the atomic coordinates and lattice 

parameters are read from external files. 

 

We create a file for the lattice parameters: 

 
$ more graphite.lattice  

lattice \ 

   4.000000000000000   -2.000000000000000    0.000000000000000  \ 

   0.000000000000000    3.464101615137755    0.000000000000000  \ 

   0.000000000000000    0.000000000000000    8.000000000000000   

 

and we create a file for the atomic positions: 

 
$ more graphite.ionpos  

# Ionic positions in lattice coordinates: 

ion C   0.000000000000000   0.000000000000000   0.250000000000000 1 

ion C   0.000000000000000   0.000000000000000   0.750000000000000 1 

ion C   0.333333333333333   0.666666666666667   0.250000000000000 1 

ion C   0.666666666666667   0.333333333333333   0.750000000000000 1 

 

Finally, we modify the input file to read these files: 

 
$ more graphite.in  

include graphite.lattice 

include graphite.ionpos 

 

kpoint-folding 6 6 2  #Gamma-centered by default 

kpoint 0.5 0.5 0.5    #To offset 



Hands-On 5: Automatic Structure Optimization PARADIM, Cornell, July 23-29, 2023 

  

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-cutoff 50  #wavefcn (density) cutoff Ha 

elec-ex-corr lda 

 

lattice-minimize nIterations 100  #Lattice and ionic geometry optimization 

 

dump-name graphite.$VAR   #Output file name 

dump End ElecDensity      #Output electronic charge density 

dump End State            #Output the end state  

dump Ionic State          #Output state every geometry (ionic/lattice) step 

dump Ionic Lattice IonicPositions #Output every geometry (ionic/lattice) step 

 

The command lattice-minimize instructs the code to perform lattice and ionic geometry optimization and asks the code 

to perform 100 iterations and stop if not converged. Now we are ready to run the calculation with the following in our job script 

file: 

 
… 

#SBATCH --ntasks-per-node=6     #number of cores/tasks per node 

… 

 
mpirun -n 6 jdftx < graphite.in >> graphite.out  

 

At the end of the run, we can look inside the output file using vi and search for the following words: 

 
/ Stress 

 

We will see something like: 

 
# Stress tensor in Cartesian coordinates [Eh/a0^3]: 

[   -0.0176104            0            0  ] 

[            0   -0.0176104            0  ] 

[            0            0  -0.00682177  ] 

 

This indicates that, as expected, in the first iteration the system is under very high pressure. Following this initial iteration, the 

code modifies the lattice vectors in the direction of lower pressure. 

 

We can note that in this case the forces acting on each atom are all vanishing by symmetry: 

 
# Forces in Lattice coordinates: 

force C  -0.000000000000000   0.000000000000000   0.000000000000000 1 

force C   0.000000000000000   0.000000000000000   0.000000000000000 1 

force C  -0.000000000000000   0.000000000000000   0.000000000000000 1 

force C  -0.000000000000000   0.000000000000000   0.000000000000000 1 

 

As a result, this procedure will not modify the Wyckoff positions of the 4 C atoms in the unit cell, and the file the 

graphite.ionpos remains the same throughout the calculations. 

 

After about 10 iterations, the calculation stops at lattice parameters of calculation: 𝑎 = 2.439 Å and 𝑐 = 5.401 Å , with the 

warning that the strain on the system is too big, so we need to resubmit the calculation.  

 

Also note that from this calculation we have obtained a 𝑐/𝑎 ratio which is much smaller than the one determined in Hands-On 

4 by studying the potential energy surface (2.214 here vs. 2.733 in Hands-On 4). The interlayer separation is approximately 

19% shorter in the present calculation. This result is a calculation artifact. What is happening here is that the code modifies the 

crystal structure so as to minimize the energy. Now, the Hamiltonian describing the system is expressed in a basis of planewaves, 
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and the wavevectors of these planewaves along the c axis are multiples of 2𝜋/𝑐. If, during the optimization, the c parameter 

undergoes a significant change (as it is the case here, since we start from 𝑐/𝑎 = 2 and we end up with 𝑐/𝑎 = 2.733), then we 

are effectively reducing our planewaves cutoff at each iteration. As a result, the calculation becomes less and less accurate. This 

indicates that the structure is not yet fully optimized. In order to avoid this problem, we should run a new calculation, starting 

from the latest lattice parameters. 

Since we chose “dump-name graphite.$VAR”, the file graphite.lattice is updated with the latest lattice 

parameters. So, when we rerun the calculation, we do not need to modify the input file anymore. 

 

Now we can rerun the calculation: 

 
$ mpirun -n 6 jdftx < graphite.in >> graphite.out  

 

with >> flag to append to the graphite.out file to keep track of all the previous steps. 

 

Perform a structural optimization for graphite once again, this time restarting from the lattice parameters 𝑎 = 2.439 Å and 𝑐 =
5.401 obtained at the previous step, as updated in the graphite.lattice file. Compare your new optimized lattice 

parameter with the results of Hands-On 4. 

 

You can visualize how the structure changes at each iteration with xcrysden by creating an AXSF, animation xsf file: 

 
$ createXSF graphite.out graphite.axsf Animated 

 

and then open it File → Open Structure → Open AXSF  
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Hands-On 6 

Elastic Constants 

 
We start the hands-on session by going to the scratch directory, and creating and moving into a folder for this session: 
 

$ cd $SCRATCH 

$ mkdir HandsOn6; cd HandsOn6 

 

In this session we will learn how to calculate elastic constants. We will start with the simple case of diamond, and then we will 

try to set up an entirely new calculation on SrTiO3 (STO). For STO we will use the Materials Project database to find the initial 

geometry. 

 

Elastic constants of diamond 

 
We want to calculate the elastic constants of diamond. As we have seen in the lectures, for a cubic system like diamond there 

are only three independent elastic constants, namely 𝐶11, 𝐶12 , and 𝐶44.  

 

Isotropic deformation. An isotropic deformation of the diamond structure corresponds to a uniform stretch of the lattice 

vectors: 

 

𝑎𝑖
′ = (1 + 𝜂)𝑎𝑖 for 𝑖 = 1,2,3 

 

The resulting change in the total potential energy from the equilibrium value 𝑈0 is: 

 
𝑈 − 𝑈0

Ω
=

3

2
(𝐶11 + 2𝐶12)𝜂

2 

 

The calculation of 𝑈 and 𝑈0can be performed by using the following input file for diamond, which has been adapted from 

Hands-On 4: 

 
$ more diamond_3.533.in  

latt-scale 6.676 6.676 6.676 

lattice \ 

   -0.50    0.00   -0.50  \ 

    0.00    0.50    0.50  \ 

    0.50    0.50    0.00 

 

coords-type lattice    #Specify atom coordinates in terms of the lattice vectors (fractional) 

ion C 0.00 0.00 0.00  1    

ion C 0.25 0.25 0.25  1    

 

kpoint-folding 4 4 4  #Gamma-centered by default 

kpoint 0.5 0.5 0.5    #To offset 

  

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-cutoff 50          #wavefcn (density) cutoff Ha 

elec-ex-corr lda 

electronic-SCF          #Perform a Self-Consistent Field optimization 

 

ionic-minimize \ 

    nIterations 10 \ 

    energyDiffThreshold 1e-6 \ 

    knormThreshold 1e-4  #Threshold on RMS cartesian force 

 

(6.1) 
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dump-name diamond.$VAR   #output file name 

dump End ElecDensity     #Output electronic density 

dump End State           #Output State i.e. everything needed to resume the calculation 

 

In this version of the input file, we are specifying that the unit cell vectors are given manually: 

 
lattice \ 

   -0.50    0.00   -0.50  \ 

    0.00    0.50    0.50  \ 

    0.50    0.50    0.00 

and these vectors are provided in units of the lattice parameter given by  

 
latt-scale 6.676 6.676 6.676 

 

The lattice parameters are printed also in the output file, note that each column represent a lattice vector in JDFTx: 
R =  

[       -3.338            0       -3.338  ] 

[            0        3.338        3.338  ] 

[        3.338        3.338            0  ] 

 

And we use ionic-minimize to relax the system, so the atoms can find their equilibrium positions when we deform the unit 

cell. 

 

By running the above calculation, we obtain the total energy in the ground state: 

 

𝑈0 = −11.4679253259808114 Ha 

 

Furthermore, we can read the volume of the unit cell by searching for: / volume  

 

This gives Ω = 74.3856 bohr3. 

 

Now we can modify this input file in order to establish an isotropic deformation with 𝜂 = 0.002 (let us call the new file 

diamond-1.in) 

 
$ more diamond-1.in 

… 

lattice \ 

          -0.501    0.000   -0.501  \ 

           0.000    0.501    0.501  \ 

           0.501    0.501    0.000 

… 

 

With this new input file, we find the total energy: 

 

𝑈 = −11.4679037091361771 Ha 

 

Using Eq. (6.1) with  𝜂 = 0.002 we obtain: 

 

𝐶11 + 2𝐶12 = 0.048434 Ha/bohr3 = 1425 GPa     where 1 Ha/bohr3 = 29421 GPa 

 

 

Tetragonal deformation. From the lectures, we have the relation: 

 
𝑈 − 𝑈0

Ω
= 3(𝐶11 − 𝐶12)𝜂

2 

 

(6.2) 
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and the tetragonal distortion of the unit cell can be realized by considering an expansion (1 + 𝜂) along x and y, and a contraction 

(1 − 2𝜂) along z. We copy the input file diamond-1.in into diamond-2.in and we modify this new file as follows: 

 
lattice \ 

   -0.501    0.000   -0.501  \ 

    0.000    0.501    0.501  \ 

    0.498    0.498    0.000 

 

This calculation gives: 

 

𝑈 = −11.4678965436591813 Ha 

 

Using Eq. (6.2) with  𝜂 = 0.002 and remembering 𝑈0 = −11.4679253259808114 Ha, we obtain: 

 

𝐶11 − 𝐶12 = 0.032245 Ha/bohr3 = 949 GPa 

 

By combining the two relations for 𝐶11 and 𝐶12 we obtain: 

 

𝐶11 = 1108 GPa and 𝐶12 = 159 GPa. 

 

The corresponding experimental values are 𝐶11 = 1482 GPa, 𝐶12 = 124 GPa, from McSkimin & Andreatch, J. Appl. Phys. 

43, 2944 (1972). 

 

Note. These calculations are not accurate, and by refining our setup we can obtain better agreement with experiment. In 

particular, we are determining elastic constants using only 2 calculations in each case. Since elastic constants are second 

derivatives of the total energy, a much more accurate approach is to evaluate such derivatives using 3 total energy calculations. 

For more details, see the explicit calculation of 𝐶44 below. 

 

 

Trigonal deformation. From the lectures, we have the relation: 

 
𝑈 − 𝑈0

Ω
=

1

2
𝐶44𝜂

2 

 

A trigonal distortion of the unit cell can be realized by considering the following distortion of the lattice parameters: 

 

u1 = u2 = u3 = u4 = u5 = 0 and u6 = η 

 

We start from the undistorted lattice parameters: 

 

𝑎1𝑥 = −
𝑎

2
  

𝑎1𝑦 = 0  

𝑎1𝑧 =
𝑎

2
  

𝑎2𝑥 = 0  

𝑎2𝑦 =
𝑎

2
  

𝑎2𝑧 =
𝑎

2
  

𝑎3𝑥 = −
𝑎

2
  

𝑎3𝑦 =
𝑎

2
  

𝑎3𝑧 = 0  

 

Since 𝑢6 = 2𝜖6 and 𝜖6 = 𝜖𝑥𝑦 = 𝜖𝑦𝑥, we can write: 

 

𝑎1𝑥
′ = 𝑎1𝑥 + 𝜖𝑥𝑦𝑎1𝑦 = −

𝑎

2
  

(6.3) 
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𝑎1𝑦
′ = 𝑎1𝑦 + 𝜖𝑦𝑥𝑎1𝑥 = −

𝜂

2
 
𝑎

2
   

𝑎1𝑧
′ = 𝑎1𝑧 =

𝑎

2
  

𝑎2𝑥
′ = 𝑎2𝑥 + 𝜖𝑥𝑦𝑎2𝑦 =

𝜂

2
 
𝑎

2
   

𝑎2𝑦
′ = 𝑎2𝑦 + 𝜖𝑦𝑥𝑎2𝑥 =

𝑎

2
   

𝑎2𝑧
′ = 𝑎2𝑧 =

𝑎

2
   

𝑎3𝑥
′ = 𝑎3𝑥 + 𝜖𝑥𝑦𝑎3𝑦 = −

𝑎

2
 (1 −

𝜂

2
)  

𝑎3𝑦
′ = 𝑎3𝑦 + 𝜖𝑦𝑥𝑎3𝑥 =

𝑎

2
 (1 −

𝜂

2
)   

𝑎3𝑧
′ = 𝑎3𝑧 = 0   

 

These relations indicate that, if we set  𝜂 = 0.002, the input file must be modified as follows: 

 
lattice \ 

          -0.5000    0.0005   -0.4995  \ 

          -0.0005    0.5000    0.4995  \ 

           0.5000    0.5000    0.0000 

 

The calculation with this input file gives: 

 

𝑈 = −11.4679341426679802 Ha 

 

Using Eq. (6.3) with  𝜂 = 0.002 and remembering 𝑈0 = −11.4679253259808114 Ha, we obtain a negative value. 

 

If 𝑈0 is not exactly the energy minimum (e.g., due to incomplete numerical convergence), we can still correctly capture the 

curvature 𝐶44 using three total energy evaluations. 

 

As in the case of cubic and tetragonal deformations, we are using the total energy computed for two configurations to evaluate 

a second derivative. To better understand what is happening, we can consider the Taylor expansion of the energy in terms of 

the strain, from (6.3): 

 

𝑈 = 𝑈0 +
1

2
Ω𝐶44𝜂

2 

 

In our calculation we tried to determine 𝐶44 by simply inverting this relation. A more acurate approach 

consists of taking the second derivative of 𝑈 with respect to 𝜂: 

 

𝜕2𝑈

𝜕𝜂2
= Ω𝐶44 

 

Using central finite differences, this expression can be evaluated numerically as: 

 

𝐶44 =
1

Ω

𝑈(+𝜂) − 2𝑈0 + 𝑈(−𝜂)

𝜂2
 

 

Using this equation, the more accurate shear constant is found to be: 

 

𝐶44 = 0.01822 Ha/bohr3 = 536 GPa 

 

which is now more comparable to the corresponding experimental value is 𝐶44 = 578 GPa [McSkimin & Andreatch, J. Appl. 

Phys. 43, 2944 (1972)]. 

 

• Calculate the elastic constants 𝐶11, 𝐶12, and 𝐶44 of diamond, by following the steps illustrated above. Determine the elastic 

constants using two different sets of calculations: one for  𝜂 = 0.002, and one for 𝜂 = 0.001. 

(6.4) 
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The bulk modulus B is a measure of the resistance of a material to hydrostatic compression. This quantity can be obtained from 

the elastic constants as: 

 

𝐵 =
1

3
(𝐶11 + 2𝐶12) 

 

• Calculate the bulk modulus of diamond, using the data obtained in the previous step, and compare your result with the 

experiment. 

• Investigate the sensitivity of the calculated bulk modulus of diamond to the choice of 𝜂, by repeating the calculations for  
𝜂 = 0.1, 0.001, and 0.0001. 

• Repeat the calculation of the bulk modulus B using three evaluations of the total energy, along the same lines as in (6.4). 

 

Elastic constants of STO 

 
In this exercise we want to set up a simple input file to study SrTiO3. In order to find an initial guess for the unit cell and atomic 

coordinates, we search the Materials Project database. In order to search the Materials Project we need to create an account. To 

this aim, please go to https://next-gen.materialsproject.org/ and click on “Login or Register”. The registration process only 

requires an email address and a password, this should take less than a minute to complete. Then you can click on “Start 

Exploring Materials” and you should be able to see a periodic table like the following: 

 

 
 

Now we can search for SrTiO3 by entering it in the search bar: 

 

 
 



Hands-On 6: Elastic Constants PARADIM, Cornell, July 23-29, 2023 

We are looking for the 𝑃𝑚3̅𝑚 structure of SrTiO3, which is the high-temperature cubic phase. We will study the cubic phase 

since it only contains 5 atoms, therefore calculations are relatively easy. 

 

 
 

By clicking on the 𝑃𝑚3̅𝑚 field we are shown the properties of this structures that have been uploaded in the database: 

 

  
 
All we need from this page is the structural data, which can be found in the POSCAR file. The ‘poscar’ format is the standard 

format of VASP, another widely used software package for DFT calculations that uses planewaves and pseudopotentials. 

The ‘poscar’ file thus downloaded should look like the following: 

 
Sr1 Ti1 O3 

1.0 

   3.9127013100000005    0.0000000000000000    0.0000000000000002 

   0.0000000000000006    3.9127013100000005    0.0000000000000002 

   0.0000000000000000    0.0000000000000000    3.9127013100000005 

Sr Ti O 

1 1 3 

direct 

   0.0000000000000000    0.0000000000000000    0.0000000000000000 Sr2+ 

   0.5000000000000000    0.5000000000000000    0.5000000000000000 Ti4+ 

   0.5000000000000000    0.0000000000000000    0.5000000000000000 O2- 

   0.5000000000000000    0.5000000000000000    0.0000000000000000 O2- 

   0.0000000000000000    0.5000000000000000    0.5000000000000000 O2- 
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Here the first line is a comment field, the second line contains the lattice parameter 𝑎 in Å. Lines 3–5 contain the lattice vectors, 

scaled by the lattice parameter 𝑎: 𝑎1 = 𝑎, 𝑎2 = 𝑎, 𝑎3 = 𝑎 (note that in this example the authors decided to set 𝑎 = 1 so as to 

give the lattice vectors directly in Å). Line 6 contains the list of atoms in the unit cell, followed by the number of atoms of each 

type on line 7, in the same order. The keyword ‘direct’ on line 8 specifies that the atomic coordinates in lines 9-13 are expressed 

as fractional coordinates (units of ‘direct’ lattice), e.g., the Ti atom is at (𝑎1 + 𝑎2 + 𝑎3)/2. 

 

• Construct the input file for a total energy calculation of SrTiO3. You can start by modifying an input file from a previous 

exercise. If anything is unclear, please consult the documentation at http://jdftx.org/.  

 

• Using the input file just created, say sto-1.in, perform a test run. This test is only to make sure that everything goes 

smoothly. For this test we can use some arbitrary convergence parameters, say elec-cutoff 20 Ha and a Brillouin-

zone sampling 4 4 4 with shifted k-points: kpoint-folding 4 4 4 and kpoint 0.5 0.5 0.5  

 

Convergence tests for STO 

 

Now that we have a basic setup for SrTiO3, we need to perform convergence tests.  

 

• Determine the planewaves kinetic energy cutoff that is required to have the total energy converged to within 50 meV/atom. 

For this calculation you can use the same kpoint-folding and kpoint settings as in the previous exercise. As a 

reminder, we performed this kind of tests for silicon in HandsOn 02. 

 

• Using the cutoff just obtained, determine the sampling of the Brillouin zone required to have the total energy converged to 

within 10 meV/atom. As a reminder, we performed this kind of tests for silicon in HandsOn 02. 

 

Structure optimization for STO 

 

• Using the convergence parameters obtained in Exercise 3, determine the optimized lattice parameter of SrTiO3 by using a 

calculation of type lattice-minimize, as in HandsOn 5. 

In this calculation you will note that the residual pressure at the end of the run is still nonzero. In order to fully optimize the 

lattice parameter, it is convenient to perform one or two additional runs using the optimized parameter as a starting point. 

 

• Determine the optimized lattice constant of STO once again, this time by mapping the potential energy surface as a function 

of the lattice parameter, as in HandsOn 3. 

 

• Which calculation provides the lowest total energy, the automatic optimization, or the manual calculation of the potential 

energy surface? 

 

• Compare your optimized lattice parameter with the experimental value from Cao et al., PSSA 181, 387 (2000). 

 

Bulk modulus of STO 

 

As a sanity check, at the end of the last two exercises you should have obtained the following parameters: 
 

… 

kpoint-folding 4 4 4  #Gamma-centered by default 

kpoint 0.5 0.5 0.5    #To offset 

… 

elec-cutoff 20        #wavefcn (density) cutoff Ha 

… 

 

• Use these parameters to calculate the bulk modulus of cubic SrTiO3. In order to obtain reasonably accurate results, it is 

convenient to use the following relations: 
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𝐵 =
1

3
(𝐶11 + 2𝐶12) =

1

9

1

Ω

𝜕2𝑈

𝜕𝜂2
≃

1

9

1

Ω

𝑈(+𝜂) − 2𝑈(0) + 𝑈(−𝜂)

𝜂2
 

 

This expression shows that we can calculate the bulk modulus by using the second derivative of the total energy with respect 

to the deformation parameter. The second derivative is then approximated using a finite-difference formula involving 3 points 

(+𝜂, 0, −𝜂). 

 

• Compare your calculated bulk modulus with the experimental values of Bell & Rupprecht, Phys. Rev. 129, 90 (1963). You 

should find that the deviation from experiment is smaller than 3%. 

 

 

 



Hands-On 7: Vibrations and Phonon Dispersions PARADIM, Cornell, July 23-29, 2023 

Hands-On 7 

Vibrations and Phonon Dispersions 

 
We start the hands-on session by going to the scratch directory, and creating and moving into a folder for this session: 
 

$ cd $SCRATCH 

$ mkdir HandsOn7; cd HandsOn7 

 

In this session we will learn how to calculate the vibrational frequencies of molecules and solids and phonon dispersion 

relations. 

 

Stretching frequency of a diatomic molecule 

 
We start from the simplest possible system, the diatomic molecule Cl2 studied in HandsOn3. For the input file, we use the 

converged parameters and optimized geometry from Hands-On3 or 5: 

 
$ more Cl2.in 

lattice Cubic 20 

 

coords-type cartesian   #Specify coordinates in terms of absolute atom position in Bohr 

ion Cl 0.000 0.000 0.000  0    

ion Cl 3.743 0.000 0.000  0    

 

kpoint-folding 1 1 1 #Gamma-centered by default 

 

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-ex-corr lda 

elec-cutoff 50 200   #Plane-wave KE cutoff for wfcn and charge density in Ha 

electronic-SCF       #Perform a Self-Consistent Field optimization 

 

dump-name Cl2.$VAR   #output file name 

dump End ElecDensity #what you would like it to output 

 

Let us run this calculation to make sure that everything runs smoothly. 

 

In the lectures, we have seen that the vibrational frequency of a diatomic molecule can be calculated using: 

 

𝜔 = √
2𝐾

𝑀
,𝐾 =

𝜕2𝑈

𝜕𝑑2 |
𝑑0

 

 

where 𝑀 is the mass of the Cl nucleus, 𝑈 is the total potential energy surface, 𝑑 is the Cl-Cl distance, and 𝑑0 is the equilibrium 

bond length. 

 

By approximating the second derivative using finite differences, we have: 

 

ℏ𝜔 ≃ ℏ√
2

𝑀

𝑈(𝑑0 + 𝛿) − 2𝑈(𝑑0) + 𝑈(𝑑0 − 𝛿)

𝛿2
 

 

where 𝛿 is a small number, say 𝛿 = 0.001 bohr. 
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We now calculate 𝑈(𝑑0), 𝑈(𝑑0 + 𝛿), and 𝑈(𝑑0 − 𝛿) by creating two new input files where the coordinates of the second Cl 

atom are modified. 

 

We can do this as usual using vi. Alternatively, we can use the following strategy, which is slightly faster: 

 
$ sed "s/3.743/3.744/g" Cl2.in > Cl2_plus.in 

$ sed "s/3.743/3.742/g" Cl2.in > Cl2_minus.in 

 
Here we are replacing the distance 3.743 bohr by 3.744 and 3.742, respectively. It is convenient to extract the corresponding 

total energies from the output files on the fly. This can be done as follows within your job script: 

 
mpirun -n 6 jdftx < Cl2.in | grep "Etot =" > U0.txt  

mpirun -n 6 jdftx < Cl2_plus.in | grep "Etot =" > U_plus.txt  

mpirun -n 6 jdftx < Cl2_minus.in | grep "Etot =" > U_minus.txt 

 

In these expressions the vertical bar (|) ‘pipes’ the output from the command on the left (mpirun -n 6 jdftx < Cl2.in) 

into the input of the following command (grep “Etot =”). The output of grep is then ‘redirected’ (>) into the file on the 

right (U0.txt). 

 

After executing these commands, we should see the following: 

 
$ more U*.txt 

:::::::::::::: 

U0.txt 

:::::::::::::: 

     Etot =      -30.1274479260779380 

:::::::::::::: 

U_minus.txt 

:::::::::::::: 

     Etot =      -30.1274478268303980 

:::::::::::::: 

U_plus.txt 

:::::::::::::: 

     Etot =      -30.1274478133593959 

 

At this point we can combine our results, considering that the mass of Cl is 35.45 amu (1 amu =1822.8885 me). We find: 

 

ℏ𝜔 = 69.7 meV 

 

to be compared to the experimental value of 66.7 meV. 

 

• Repeat the calculation of the stretching frequency of Cl2, this time using (i) 𝛿 = 0.002 bohr, (ii) 𝛿 = 0.01 bohr. 

 

 

Stretching frequency of a diatomic molecule with frozen phonon method in vibrations 

 
The energies calculated so far have been at a specific set of atom coordinates, whether specified manually or optimized. These 

energies correspond to the Born-Oppenheimer surface, and do not include (free-)energy components due to the ionic degrees 

of freedom. This tutorial introduces the vibrations post-processing module with the example of the binding (free-)energy 

of Cl2. 

 

In order to execute vibrations, we first need to calculate the ground state properties of the system, so we run our input file 

with the converged atomic positions again: 
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$ more Cl2.in 

lattice Cubic 20 

 

coords-type cartesian   #Specify coordinates in terms of absolute atom position in Bohr 

ion Cl 0.000 0.000 0.000  0    

ion Cl 3.743 0.000 0.000  0    

 

kpoint-folding 1 1 1 #Gamma-centered by default 

 

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-ex-corr lda 

elec-cutoff 50 200   #Plane-wave KE cutoff for wfcn and charge density in Ha 

electronic-SCF       #Perform a Self-Consistent Field optimization 

 

dump-name Cl2.$VAR   #output file name 

dump End State #what you would like it to output 

 

but this time we dump the final state of our system out. 

 
mpirun -n 6 jdftx < Cl2.in > Cl2.out 

 

Now, calculate the vibrational contributions by running jdftx on the input file: 

 
$ more Cl2_vibrations.in 

lattice Cubic 20 

 

coords-type cartesian   #Specify coordinates in terms of absolute atom position in Bohr 

ion Cl 0.000 0.000 0.000  0    

ion Cl 3.743 0.000 0.000  0    

 

kpoint-folding 1 1 1 #Gamma-centered by default 

 

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-ex-corr lda 

elec-cutoff 50 200   #Plane-wave KE cutoff for wfcn and charge density in Ha 

electronic-SCF       #Perform a Self-Consistent Field optimization 

 

initial-state Cl2.$VAR 

dump End None 

vibrations \ 

    dr 0.001 \ 

    centralDiff yes \ 

    translationSym yes \ 

    rotationSym yes \ 

    T 298 

 

Edit the job script file to submit the jdftx calculation with vibrations: 

 
mpirun -n 6 jdftx < Cl2_vibrations.in > Cl2_vibrations.out  

 

The vibrations command calculates the normal modes of vibration by perturbing each atom by displacements of magnitude 

dr (which corresponds to the 𝛿 in the previous exercise) and constructs the force matrix optionally using a central-difference 

derivative formula (controlled by centralDiff). The translationSym and rotationSym commands control whether 

translation and rotational symmetries are used to constrain and optimize the force matrix calculations. (These symmetries 

should be used for molecular calculations but should not be used for solid or surface calculations.) T specifies the temperature 

for vibrational free energy calculation. 
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Now examine the generated output file. Notice that electronic minimization is performed for several perturbed configurations, 

and then normal modes obtained by diagonalizing the force matrix are reported. In this case, of the six degrees of freedom due 

to two Cl nuclei positions, five normal modes are zero (three translational and two rotational), and one normal mode, the Cl-

Cl stretch, has a finite vibrational frequency of about 595 cm-1. 

 

The vibrational frequencies are usually given in units of cm-1, i.e. as a wavenumber. The conversion is: 1 meV = 8.0655 cm-1 

 

The frequency obtained from this calculation of 73.8 meV differs from our result from the previous section because (1) acoustic 

sum rule, which modifies the dynamical matrix in such a way as to make sure that the molecule will not experience any restoring 

force when translated or rotated, also modifies the potential energy surface, and (2) the present calculations correspond to 

taking the second derivative of  𝑈 in the limit 𝛿 → 0. 

 

Finally, the output file reports the vibrational free energy components including the zero-point energy (ZPE), the vibrational 

energy including ZPE (Evib), the vibrational entropy (TSvib) and the net vibrational free energy (Avib).  

 

 

Phonon dispersion relations of silicon with frozen phonon method in phonon 

 
In this section we calculate the phonon dispersion relations of silicon. We begin by setting up the usual input file for diamond, 

from HandsOn3: 

 
$ more Si_totalE.in  

lattice face-centered Cubic 5.468 

latt-scale 1.88973 1.88973 1.88973  #Convert lattice vectors from Angstroms to bohrs 

 

coords-type lattice        #Specify atom coordinates in terms of the lattice vectors (fractional) 

ion Si 0.00 0.00 0.00  0 

ion Si 0.25 0.25 0.25  0 

 

kpoint-folding 8 8 8  #Gamma-centered by default 

  

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-cutoff 12  #wavefcn (density) cutoff Ha 

elec-ex-corr lda 

electronic-SCF       #Perform a Self-Consistent Field optimization 

 

dump-name Si.$VAR 

dump End State BandEigs #State and band eigenvalues 

dump End ElecDensity    #Save the self-consistent electron density 

dump End EigStats       #Get eigenvalue statistics 

 

 

where we output the total energy and the final state of our system is now written as output files, to be used in the next step. 

 

In periodic systems, the force matrix has a finite range that extends beyond a single unit cell of the system. In this case, Bloch's 

theorem implies that the eigenvectors are waves of atom vibrations, called phonons, and the eigenvalues exhibit a band structure 

term the phonon dispersion. Calculating forces due to atom perturbations beyond the range of one unit cell requires performing 

supercell calculations and mapping the resulting properties back to the unit cell. The vibrations command within jdftx only 

deals with unit cell calculations and that suffices for molecules. For solids, the phonon executable handles constructing 

supercells, performing perturbed calculations, and mapping the so-calculated phonon properties back to the original unit cell. 

 

 

Once we obtain the total energy, we can set up the input file for the phonon calculation: 
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$ more Si_phonon.in  

#Save the following to phonon.in 

include Si_totalE.in       #Full specification of the unit cell calculation 

initial-state Si.$VAR      #Start from converged unit cell state 

dump-only                  #Don't reconverge unit cell state 

 

phonon supercell 2 2 2     #Calculate force matrix in a 2x2x2 supercell 

 

and run the phonon calculation with its own executable (note that this is separate from jdftx): 

 
mpirun -n 6 phonon < Si_phonon.in > Si_phonon.out 

 

The input file is extremely simple, relying on Si_totalE.in for the entire specification of the unit cell calculation and the 

corresponding converged unit cell results. The only addition is the phonon command, for which the only required argument is 

the supercell size in which to calculate the force matrix.  

 

Note that phonon calculations are implemented in the JDFTx code for Gamma-centered total energy calculations only, so we 

chose a k-point mesh of 8x8x8 in this example.  The supercell size must be a factor of the k-point folding: in this case, only 1, 

2, 4, and 8 are acceptable for each dimension of the supercell. Also note that the calculation will be substantially more expensive 

as the supercell size is increased.  

 

The output starts with listing of all the commands, followed by the usual initialization of a unit cell calculation under the 

heading “Unit cell calculation.” This part ends on the energy evaluation in the unit cell at a fixed state (corresponding to dump-

only). 

 

Next, phonon constructs the supercell and determines its symmetries. It figures out all the atom displacements necessary to 

generate the force matrix: 2 atoms/cell x 3 Cartesian directions x 2 signs for central difference derivative = 12 for this example, 

and then finds the number of symmetry-irreducible perturbations, which happens to be just 1 in this case! 

 

Then, for each symmetry-irreducible perturbation, it runs a supercell calculation with atom displaced (by 𝑑𝑟 = 0.1 bohr by 

default, see phonon command at http://jdftx.org/CommandPhonon.html to change this) under the heading “Perturbed 

supercell calculation X of N.” The output format for each such calculation is also the usual JDFTx initialization followed by 

ElecMinimize (or SCF), but note that the lattice vectors are all twice as large, the bands and basis 8 times larger, while the k-

point folding is halved, because this is a 2x2x2 supercell calculation. 

 

At the end of each supercell calculation, phonon reports the energy and force change due to the perturbation per unit cell. 

Always make sure that these are one-two orders of magnitude larger than the convergence thresholds, either by adjusting those 

thresholds, or by adjusting 𝑑𝑟 in the phonon command. It is important to note that for accurate calculations, you should check 

that the phonon results are converged with respect to the 𝑑𝑟 parameter. 

 

After all the supercell calculations, phonon collects force matrix contributions from each and outputs this to the binary 

Si.phononOmegaSq file (which we will use below). It also outputs the text file Si.phononCellMap, which lists the 

order of neighboring unit cells for the force matrix output (in exactly the same format as the wannier.mlwfCellMap that 

will be encountered in the Separated bands Wannier tutorial in HandsOn 9). Meanwhile, Si.phononBasis lists the order of 

atom perturbations in the phonon force matrix. The Si.phononHsub binary file contains electron-phonon matrix elements, 

which we will not discuss in this tutorial. 

 

The code ends with a summary of the zero-point energy and vibrational free energy contributions, in exactly the same format 

as the output of the vibrations command, except it is now the (free-)energy contributions per unit cell of a periodic system. 

Note that phonon accounts for 3D periodicity for the Si example here, but will automatically switch to 2D or 1D periodicity, 

as appropriate, based on the geometry specified in the coulomb-interaction command. 

 

Next, we list high-symmetry points in the Brillouin zone laying out a path along which we want the phonon dispersion: 
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$ more Si_bandstruct.kpoints.in 

#Save the following to Si_bandstruct.kpoints.in 

kpoint 0.000 0.000 0.000     Gamma 

kpoint 0.000 0.500 0.500     X 

kpoint 0.250 0.750 0.500     W 

kpoint 0.500 0.500 0.500     L 

kpoint 0.000 0.000 0.000     Gamma 

kpoint 0.375 0.750 0.375     K 

 

For common crystal structures, you can find the high-symmetry points easily on the web. For a more complete listing, you can 

consult a crystallography database e.g., the Bilbao database using the space group of your crystal. 

 

From the above path specification, we can generate a sequence of points along the path and a plot script by running 

bandstructKpoints (in the jdftx/scripts directory) directly at the terminal (not using a job script file in the queue, 

because this is a simple and fast script that does not require computationally expensive resources): 

 
$ bandstructKpoints Si_bandstruct.kpoints.in 0.05 bandstruct 

 

This should generate a file bandstruct.kpoints containing kpoints along the high-symmetry path and a gnuplot script 

bandstruct.plot. The second parameter, dk, of bandstructKpoints specifies the typical distance between kpoints 

in (dimensionless) reciprocal space; decreasing dk will produce more points along the path, which will take longer to calculate, 

but produce a smoother plot. Note that the last column of banstruct.kpoints.in is a label for the special Brillouin zone 

point which is used to label the plot. 

 

Finally, we will calculate and plot the phonon dispersion from the force matrix output using this python script taken from the 

JDFTx tutorials website: 

 
$ more PhononDispersion.py 

#Save the following to PhononDispersion.py: 

import numpy as np 

from scipy.interpolate import interp1d 

 

#Read the phonon cell map and force matrix: 

cellMap = np.loadtxt("Si.phononCellMap")[:,0:3].astype(int) 

forceMatrix = np.fromfile("Si.phononOmegaSq", dtype=np.float64) 

nCells = cellMap.shape[0] 

nModes = int(np.sqrt(forceMatrix.shape[0] / nCells)) 

forceMatrix = np.reshape(forceMatrix, (nCells,nModes,nModes)) 

 

#Read the k-point path: 

kpointsIn = np.loadtxt('bandstruct.kpoints', skiprows=2, usecols=(1,2,3)) 

nKin = kpointsIn.shape[0] 

#--- Interpolate to a 10x finer k-point path: 

nInterp = 10 

xIn = np.arange(nKin) 

x = (1./nInterp)*np.arange(1+nInterp*(nKin-1)) #same range with 10x density 

kpoints = interp1d(xIn, kpointsIn, axis=0)(x) 

nK = kpoints.shape[0] 

 

#Calculate dispersion from force matrix: 

#--- Fourier transform from real to k space: 

forceMatrixTilde = np.tensordot(np.exp((2j*np.pi)*np.dot(kpoints,cellMap.T)), forceMatrix, 

axes=1) 

#--- Diagonalize: 

omegaSq, normalModes = np.linalg.eigh(forceMatrixTilde) 

 

#Plot phonon dispersion: 

import matplotlib.pyplot as plt 

meV = 1e-3/27.2114 
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plt.plot(np.sqrt(omegaSq)/meV) 

plt.xlim([0,nK-1]) 

plt.ylim([0,None]) 

plt.ylabel("Phonon energy [meV]") 

#--- If available, extract k-point labels from bandstruct.plot: 

try: 

    kpathLabelText = ["Gamma", "X", "W", "L", "Gamma", "K"] 

    kpathLabelPos = [0, 15, 23, 31, 49, 68] 

    kpathLabelPos = [x * nInterp for x in kpathLabelPos] 

    plt.xticks(kpathLabelPos, kpathLabelText) 

except: 

    print('Warning: could not extract labels from bandstruct.plot') 

plt.show() 

 

We will do this postprocessing in our local computers where visualization is available. For this, we will need to copy 

Si.phononCellMap, Si.phononOmegaSq, bandstruct.kpoints files to our local desktop, for example: 

 
$ scp paradim-bpamuk@paradim.arch.jhu.edu:/scratch/paradim/paradim-

bpamuk/HandsOn7/Si/Si.phononCellMap . 

 

Now we can create the plot running the python script above: 
 

$ python3 PhononDispersion.py 

 
 

Note that the phonon energies increase linearly from zero near the Gamma point, rather than quadratically as the electron 

energies do in band structure plots, because the phonon energy is the square root of the diagonalized quantity. This results in 

finite group velocities (the sound speeds) of phonons near Gamma-point. 
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Hands-On 8 

Band Structures 

 
We start the hands-on session by going to the scratch directory, and creating and moving into a folder for this session: 

 
$ cd $SCRATCH 

$ mkdir HandsOn8; cd HandsOn8 

 

In this session we will learn how to calculate the electronic band structures of semiconductors and metals. 

 

Band structure of silicon 

 
This tutorial illustrates calculations of the electronic band structure, specifically, the variation of the Kohn-Sham eigenvalues 

along a special kpoint path in the Brillouin zone. It will also introduce an alternate algorithm for converging the electronic state, 

the self-consistent field (SCF) method. 

 

First, let’s run a total energy calculation as usual by copying the input and job script files from the previous tutorial: 

 
$ cp $SCRATCH/HandsOn7/Si_totalE.in . 

 

We add a new line in our Si_totalE.in to include the unoccupied bands in our calculation, too: 
 

elec-n-bands 10             #Si has 4 occupied bands; asking for 6 unoccupied bands 

 

$ cp $SCRATCH/HandsOn7/job.sh . 

 

We will run with 4 processors today: 
… 

#SBATCH --ntasks-per-node=4     #number of cores/tasks per node 

… 

mpirun -n 4 jdftx < Si_totalE.in > Si_totalE.out  

 

We also copy the high-symmetry points in the Brillouin zone from the previous example to generate the 

bandstruct.kpoints file: 

 
$ cp $SCRATCH/HandsOn7/Si_bandstruct.kpoints.in . 

$ bandstructKpoints Si_bandstruct.kpoints.in 0.05 bandstruct 

 

and generate the path along which we want to calculate the electronic band structure. 

 

Now we can run a band structure calculation along this path with the input file: 

 
$ more Si_bandstruct.in 

#Save the following to bandstruct.in 

lattice face-centered Cubic 5.468 

latt-scale 1.88973 1.88973 1.88973  #Convert lattice vectors from Angstroms to bohrs 

 

coords-type lattice        #Specify atom coordinates in terms of the lattice vectors (fractional) 

ion Si 0.00 0.00 0.00  0 

ion Si 0.25 0.25 0.25  0 

  

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-cutoff 12  #wavefcn (density) cutoff Ha 
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elec-ex-corr lda 

 

include bandstruct.kpoints     #Get kpoints along high-symmetry path created above 

fix-electron-density Si.$VAR   #Fix the electron density (not self-consistent) 

elec-n-bands 10            #Number of bands to solve for 

dump End BandEigs          #Output the band eigenvalues for plotting 

dump-name bandstruct.$VAR  #This prefix should match the final parameter of bandstructKpoints 

 

which we run using the edit in the job script: 

 
mpirun -n 4 jdftx < Si_bandstruct.in > Si_bandstruct.out  

 

which produces bandstruct.eigenvals.  

 

We again do the plotting on our local computer, for this scp the files bandstruct.eigenvals, 
bandstruct.kpoints, and bandstruct.plot. 

 

Finally running 

 
gnuplot --persist bandstruct.plot 

 

will generate a plot of the electronic band structure. 

 

Note that the y-axis (energy) is in Hartrees and its absolute value is not particularly meaningful because the electrostatic 

potential in a 3D periodic system does not have an unambiguous zero reference point. Typically, electronic band structure plots 

are referenced to the valence band maximum (VBM or HOMO) energy at zero for insulators, or the Fermi level (mu) for metals. 

Look at the eigStats output from the total energy calculation (Si.eigStats) to identify the VBM (HOMO) energy and 

replace the final line of the auto-generated bandstruct.plot with the following lines: 

 
set xzeroaxis               #Add dotted line at zero energy 

set ylabel "E - VBM [eV]"   #Add y-axis label 

set yrange [*:10]           #Truncate bands very far from VBM 

plot for [i=1:nCols] "bandstruct.eigenvals" binary format=formatString u 0:((column(i)-

VBM)*27.21) w l 

 

replacing VBM = 0.213073 in the last line with the relevant value from Si.eigStats. Note that this modification also 

converts the energy from Hartrees to eV for the plot. Now rerunning gnuplot produces the plot shown below.  
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Notice that at the Gamma point, the lowest band is single while the next three higher bands are degenerate: these line up with 

the s and p valence orbitals on the Silicon atoms. These degeneracies change in different parts of the Brillouin zone: the XW 

segment has two pairs of degenerate bands, while the WL and Gamma-K segments have no degeneracies. By looking for the 

valence band top at Gamma and the conduction band bottom along the Gamma-X line, we find that the band gap of silicon in 

DFT/LDA is Eg = 0.51 eV. The calculated band gap is much smaller than the experimental value of 1.2 eV. 

 

Density of states of silicon 

 
The previous tutorial showed one way of examining Kohn-Sham eigenvalues in a crystal, the electronic band structure, which 

plotted the eigenvalues along a path. This tutorial calculates the density of states in silicon, which is the probability distribution 

of eigenstates in energy (eigenvalue) space. 

 

First, we calculate the total density of states using: 

 
$ more Si_DOS.in  

lattice face-centered Cubic 5.468 

latt-scale 1.88973 1.88973 1.88973  #Convert lattice vectors from Angstroms to bohrs 

 

coords-type lattice        #Specify atom coordinates in terms of the lattice vectors (fractional) 

ion Si 0.00 0.00 0.00  0 

ion Si 0.25 0.25 0.25  0 

 

kpoint-folding 12 12 12  #Gamma-centered by default 

  

#Select pseudopotential set: 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/GBRV/$ID_lda.uspp 

elec-cutoff 12  #wavefcn (density) cutoff Ha 

elec-ex-corr lda 

electronic-SCF       #Perform a Self-Consistent Field optimization 

 

dump-name Si.$VAR 

dump End None 

 

elec-n-bands 10             #Si has 4 occupied bands; asking for 6 unoccupied bands 

converge-empty-states yes   #Make sure that empty state eigenvalues are reliable 

 

density-of-states Total     #Output total density-of-states 

 
$ mpirun -n 4 jdftx < Si_DOS.in > Si_DOS.out 

 

Starting from the total energy calculations of the previous two tutorials, all we needed to do is add the command density-

of-states. Additionally, to get a few unoccupied states, we ask for more bands using elec-n-bands and make sure the 

empty states are converged at the end of the calculation using converge-empty-states. (Note that empty or unoccupied 

states that don't affect the total energy need not converge at all in a minimize calculation and may not converge fully in an SCF 

optimization.) We also cranked up the number of k-points to get smoother results. 

 

Running the above calculation produces a plain text file "Si.dos", which we can straightforwardly plot in gnuplot: 

 
plot "Si.dos" u 1:2 w l 

 

However, to make things a little more interesting (and show off some gnuplotting!), let's combine this with the band structure 

from the previous tutorial. Edit the last section of bandstruct.plot (including the edits from the previous tutorial) to be: 

 
$ more bandstruct.plot 

… 

set xzeroaxis               #Add dotted line at zero energy 
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set ylabel "E - VBM [eV]"   #Add y-axis label 

set yrange [*:10]           #Truncate bands very far from VBM 

eV = 1/27.2114              #Value of eV in Hartrees 

VBM = 0.213072              #VBM value (HOMO from totalE.eigStats) 

xEnd = 68                   #Last x-tic value on k-path 

set arrow \ 

  from first xEnd, graph 0 \ 

    to first xEnd, graph 1  #Draw separator 

 

plot \ 

  for [i=1:nCols] "bandstruct.eigenvals" binary format=formatString u 0:((column(i)-VBM)/eV) w 

l, \ 

  "Si.dos" u (xEnd+0.2*$2):(($1-VBM)/eV) with filledcurves y1=xEnd linecolor rgb "black" 

 

 
 

This rotates the density-of-states and aligns its energy with the y-axis of the band structure, producing the plot shown above. 

Note the correlations between features in the band structure and the density of states. The highest density occurs where there 

are bands with low curvature, such as the flat section of the lowest bands in the XW segment and the low curvature for the 

lowest unoccupied bands near Gamma.  

 

• Can you identify the band gap in the density of states? Correlating it with the band structure, is it a direct or indirect band 

gap? (That is are the highest occupied and lowest unoccupied states at the same k-point, or different ones?) 

 

Next, let us examine contributions from various orbitals to the density of states. Modify the density-of-states commands in 

Si.in from Total to: 

 
density-of-states \ 

    OrthoOrbital Si 1 s \ 

    OrthoOrbital Si 1 p 

 

and rerun jdftx on that input file. Here we requested s and p orbital-projected contributions, which will both be saved to 

columns in the same file Si.dos. Update the final section of the latest version of bandstruct.plot to: 

 
set key top right outside 

plot \ 

   for [i=1:nCols] "bandstruct.eigenvals" binary format=formatString u 0:((column(i)-VBM)/eV) 

w l title "", \ 

   "Si.dos" u (xEnd+0.5*$2):(($1-VBM)/eV) w l lw 2 title "s", \ 

   "Si.dos" u (xEnd+0.5*$3):(($1-VBM)/eV) w l lw 2 title "p" 
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and rerun: 

 
gnuplot --persist bandstruct.plot 

 

to get the plot shown below.  

 

 
 

This time, instead of plotting a single total density of states, we plotted the contributions due to the s and p orbitals on the first 

Si atom. Note that the lower occupied bands exhibit s and p character, while the higher occupied bands have predominantly p 

character. The unoccupied bands have mixed character, but with a higher p fraction. 

 

Band structure of aluminum 

 
I recommend putting the results of Si and Al in their own folders, which can help in the following tutorial. 

 

Silicon, the crystalline solid we have worked with is a semiconductor with a band gap which we identified in the previous 

section. This gap clearly demarcates occupied states from unoccupied states for all k-points, so electron 'fillings' are 

straightforward: the lowest (nElectrons/2) bands of all k-points are filled, and the remaining are empty. This is no longer true 

for metals, where one or more bands are partially filled, and these fillings (or occupation factors) must be optimized self-

consistently. This tutorial introduces such a calculation for aluminum. 

 
$ more Al_totalE.in 

lattice face-centered Cubic 7.65 

 

ion Al 0.00 0.00 0.00  0 

 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/SG15/$ID_ONCV_PBE.upf 

elec-cutoff 30 

 

kpoint-folding 12 12 12 

 

elec-n-bands 16 

elec-smearing Fermi 0.01 

electronic-SCF 

converge-empty-states yes 
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dump-name Al.$VAR 

dump End State BandEigs ElecDensity 

density-of-states Total 

dump End EigStats       #Get eigenvalue statistics 

 

The parameters elec-cutoff and kpoint-folding are converged separately.  

 

We will use a norm-conserving pseudopotential for aluminum because we will use a feature (dipole matrix elements) not 

supported for ultrasoft pseudopotentials in the last tutorial (which builds on this tutorial). Also note that this pseudopotential 

includes core electrons, so set a lower energy bound in the plots to filter these out and focus on the valence electrons. 

 

The new keywords elec-smearing Fermi 0.01 in red are needed whenever we deal with metals. These keywords 

instruct the code that we want to allow for fractional occupations of the Kohn-Sham states and that occupations are described 

using the Fermi-Dirac distribution, with a width of 0.01 Ha. We also ask the code to calculate 16 bands with elec-n-bands 

16 to account for the unoccupied bands of the metal. 

 

Next, we can use the same path as the previous example, as the two cubic structures are similar, to generate the k-point path 

along which we want to plot the band structure: 

 
$ cp Si_bandstruct.kpoints.in ./Al_bandstruct.kpoints.in 

$ bandstructKpoints Al_bandstruct.kpoints.in 0.05 bandstruct 

 

Now we are ready to run the band structure calculation with the input file: 

 
$ more Al_bandstruct.in 

lattice face-centered Cubic 7.65 

   

ion Al 0.00 0.00 0.00  0 

 

ion-species 

/data/apps/extern/jdftx/1.7.0/usr/local/share/jdftx/pseudopotentials/SG15/$ID_ONCV_PBE.upf 

 

elec-cutoff 30 

 

include bandstruct.kpoints     #Get kpoints along high-symmetry path created above 

fix-electron-density Al.$VAR   #Fix the electron density (not self-consistent) 

elec-n-bands 16            #Number of bands to solve for 

dump End BandEigs          #Output the band eigenvalues for plotting 

dump-name bandstruct.$VAR  #This prefix should match the final parameter of bandstructKpoints 

 

and after running the calculations by editing our job script file:  

 
mpirun -n 4 jdftx < Al_totalE.in > Al_totalE.out  

mpirun -n 4 jdftx < Al_bandstruct.in > Al_bandstruct.out  

 

we are ready to plot the band structure using the bandstruct.plot with the appropriate edits as before.  

 

• Edit bandstruct.plot to reference the energies relative to the Fermi level (or mu) (from the final FillingsUpdate line, 

or equivalently using dump End EigStats). and convert to eV.  

• Also update the y-axis range to exclude energies far below the Fermi level, which we have set to zero in the plot and 

annotated with a dotted line.  

• As a reference, the final script should look like: 

 
#!/usr/bin/gnuplot -persist 

set xtics ( "Gamma" 0,  "X" 15,  "W" 23,  "L" 31,  "Gamma" 49,  "K" 68 ) 

unset key 

nRows = real(system("awk '$1==\"kpoint\" {nRows++} END {print nRows}' bandstruct.kpoints")) 
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nCols = real(system("wc -c < bandstruct.eigenvals")) / (8*nRows) 

formatString = system(sprintf("echo '' | awk 'END { str=\"\"; for(i=0; i<%d; i++) str = str 

\"%%\" \"lf\"; print str}'", nCols)) 

#plot for [i=1:nCols] "bandstruct.eigenvals" binary format=formatString u 0:i w l 

set xzeroaxis              #Add dotted line at zero energy 

set ylabel "E - EF [eV]"   #Add y-axis label 

set yrange [-15:15]        #Truncate bands to see around the Fermi level 

plot for [i=1:nCols] "bandstruct.eigenvals" binary format=formatString u 0:((column(i)-

0.398948)*27.21) w l 

 

Run bandstruct.plot with gnuplot to get the electronic band structure shown below: 

 

 
 

• Study the k-point convergence of this metal calculation following the outline of the Brillouin-zone sampling tutorial. How 

does the k-point convergence of the energy compare to the Silicon case?  

 

• Try reducing the temperature in elec-smearing Fermi from 0.01 to 0.005 and redo the k-point convergence study.  

 

• Compare the k-point convergence between the two temperatures.  

 

Analytically, you expect the number of k-points per dimension to be inversely proportional to the Fermi temperature (smoothing 

width) in order to keep the accuracy (relative to the true infinite k-points limit) constant. 

 

• Calculate the electronic density of states of Al and plot together with band structure as in the previous exercise. 
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Hands-On 9 

Maximally Localized Wannier Functions 

 
We start the hands-on session by going to the scratch directory, and creating and moving into a folder for this session: 

 
$ cd $SCRATCH 

$ mkdir HandsOn9; cd HandsOn9 

 

In this session we will learn how to calculate the maximally localized Wannier functions (MLWFs) of semiconductors. 

 

Separated bands of silicon 

 
We will calculate maximally localized Wannier functions (MLWFs) for a set of bands that are separated in energies from other 

bands. This is applicable for the occupied valence bands of semiconductors and insulators. Here, we will construct and visualize 

Wannier functions for silicon and demonstrate band-structure interpolation using MLWF-based ab initio tight-binding models. 

 

In a small molecule, the electron wavefunctions (Kohn-Sham orbitals) are localized around a few atoms, and we can easily 

visualize and interpret them. There is no corresponding example for the solids. This is, in part, because the Kohn-Sham orbitals 

now extend over the entire crystal, depend on the Bloch wave-vector 𝒌 in addition to a band index (orbital number) and are, in 

general, complex-valued. 

 

Wannier functions represent a Fourier transform of the Kohn-Sham orbitals over Bloch-wave vectors, which localizes them 

around one unit cell of the crystal. Now we no longer need to deal with each 𝑘 separately: we have one Wannier function for 

each band centered at each unit cell; the Wannier functions are identical from one unit cell center to another.  

 

However, these functions are not uniquely determined because the phase of the orbitals are independently variable for each 𝑘, 

and different combinations of phases generate different sets of Wannier functions.  

 

Maximally-localized Wannier functions are a special case, where linear combinations and phases of orbitals from (i.e. unitary 

transformations of) a number of bands at each 𝑘 are optimized to make the Wannier functions as localized as possible. MLWFs 

are still not unique, however, since once can still choose the combinations of bands that are linearly combined and the initial 

guess for the phases that determines which of several minima the optimization procedure converges to.  

 

Let's start with the silicon calculations from HandsOn8: 

 
$ cp $SCRATCH/HandsOn8/Si_totalE.in . 

mpirun -n 4 jdftx < Si_totalE.in > Si_totalE.out  

 

$ cp $SCRATCH/HandsOn8/Si_bandstruct.kpoints.in . 

$ bandstructKpoints Si_bandstruct.kpoints.in 0.05 bandstruct 

 

$ cp $SCRATCH/HandsOn8/Si_bandstruct.in . 

mpirun -n 4 jdftx < Si_bandstruct.in > Si_bandstruct.out  

 

Now, we can set up a Wannier input file: 

 
$ more Si_wannier.in 

#Save the following to wannier.in: 

include Si_totalE.in 

 

wannier \ 

    saveWfnsRealSpace yes 
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wannier-initial-state Si.$VAR 

wannier-dump-name wannier.$VAR 

 

wannier-center Gaussian 0.125 0.125 0.125 

wannier-center Gaussian 0.625 0.125 0.125 

wannier-center Gaussian 0.125 0.625 0.125 

wannier-center Gaussian 0.125 0.125 0.625 

 

This includes all the commands from the total energy calculation input file, and then adds commands specifying parameters for 

MLWF construction. The wannier command controls global options for the Wannier module, and here we specify that we 

want real-space wave function output (disabled by default since these files can be large!).  

 

Next, the wannier-initial-state and wannier-dump-name commands specify which total-energy calculation 

Wannier should read the state from, and the file-name pattern for Wannier-specific outputs, respectively. Note that Wannier 

requires that the input total-energy calculation have at least State and BandEigs output. 

 

Finally, the four wannier-center commands indicate the initial guesses ("trial orbitals") for constructing four MLWFs. 

The invocation above corresponds to Gaussian orbitals (of default sigma 1 bohrs) centered at the specified lattice coordinates: 

here we chose the centers of bonds from one Si atom to its nearest neighbors.  

 

There are many other options for trial orbitals, including atomic orbitals and arbitrary linear combinations of Gaussian orbitals 

and atomic orbitals; see the wannier-center command documentation for details. By default, with four wannier-

centers specified, the code will construct MLWFs from the four lowest bands in the system; this can be changed using the 

wannier command, as we will demonstrate in the next tutorial. 

 

Now, generate the Wannier functions running the wannier code, this step is fast enough for us to run with one processor: 

 
mpirun -n 1 wannier < Si_wannier.in > Si_wannier.out  

 

Note that we are not using the jdftx executable here, but instead "wannier", which is also built in the same directory as 

jdftx. 

 

Examine the output file wannier.out. The overall structure is very similar to jdftx output files.  

 

The initialization section contains the usual parts followed by Wannier-specific parts.  

 

After initialization, we find WannierMinimize lines which are optimizing a quantity called Omega (analogous to 

ElecMinimize optimizing Etot or F). This Omega, called the spread function, is the sum of variances of the Wannier 

functions, and minimizing it results in MLWFs.  

 

At the end, the code reports the converged centers and spreads for each of the four MLWFs and ends with Wannier-specific 

outputs. 

 

By default, the code dumps "mlwfU" which are the optimized unitary rotations at each k-point, "mlwfH" which is the 

Hamiltonian in the MLWF basis, and "mlwfBandContrib" specifying the ranges of bands and energies covered by each 

MLWF. Additionally, during initialization, the code dumps "mlwfBandRanges" which specifies the minimum and maximum 

energies of each band, which we will find useful in the next tutorial, and "mlwfCellMap" which specifies lattice vectors to 

surrounding unit cells in the order used for storing the Hamiltonian, which we will use below. Finally, since we asked for it, we 

also got real-space MLWF output in four files "0.mlwf", "1.mlwf" etc. 

 

Visualization of Wannier functions: 

 

You can use the createXSF script and VESTA to visualize Wannier functions as well: 

 
$ createXSF wannier.out wannier.0.xsf wannier.0.mlwf 
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Now the output is on a supercell rather than the unit cell. The dimensions of this supercell depend on the k-point sampling and 

are 8 x 8 x 8 in this case. Use the boundary settings in VESTA to zoom in on the Wannier function, as shown below: 

 

 
 

Note that the Wannier function is centered on the Si-Si bond as expected and has 3-fold symmetry around the bond because it 

is along a [111] axis.  

 

Similarly, plot the other three Wannier functions and notice that they are identical except for being centered on a bond with a 

different direction (four bond directions over all for the tetrahedral lattice in a diamond structure). 

 

Band structure with Wannier Hamiltonian: 

 

Next, we'll generate the band structure using the Wannier Hamiltonian output. The "mlwfH" file contains the Hamiltonian in 

the optimized MLWF basis. It contains an array of matrices of dimensions nCenters x nCenters (4 x 4 in this case) corresponding 

to the matrix elements between each of the MLWFs at one lattice site with each of the MLWFs at a nearby lattice site.  

 

The order of lattice sites is specified in the "mlwfCellMap" file.  

 

The number of lattice sites depends on the k-point sampling and fills up a Wigner-Seitz cell of the effective supercell (8 x 8 x 

8 in this case). Examine wannier.mlwfCellMap, it will have a somewhat larger number of lines than 83 = 512 because it 

repeats boundary cells to maintain crystal symmetry. (You can visualize the cell map in gnuplot using: splot 
"wannier.mlwfCellMap" u 4:5:6 ) 

 

The above MLWF-basis Hamiltonian is a tight-binding model, but with multiple states on each lattice site (4 in this case), and 

connections to neighboring sites beyond just the nearest ones (as specified by the cell map). This tight-binding model 

reproduces the first-principles band structure from DFT exactly and is called an ab initio tight-binding model. The following 

Python script calculates band structure from MLWF Hamiltonian: 

 
$ more WannierBandstruct.py 

#Save the following to WannierBandstruct.py: 

import numpy as np 

from scipy.interpolate import interp1d 

 

#Read the MLWF cell map, weights and Hamiltonian:     

cellMap = np.loadtxt("wannier.mlwfCellMap")[:,0:3].astype(int) 

Wwannier = np.fromfile("wannier.mlwfCellWeights") 

nCells = cellMap.shape[0] 

nBands = int(np.sqrt(Wwannier.shape[0] / nCells)) 

Wwannier = Wwannier.reshape((nCells,nBands,nBands)).swapaxes(1,2) 

#--- Get k-point folding from totalE.out: 

for line in open('Si_totalE.out'): 

    if line.startswith('kpoint-folding'): 

        kfold = np.array([int(tok) for tok in line.split()[1:4]]) 

kfoldProd = np.prod(kfold) 

kStride = np.array([kfold[1]*kfold[2], kfold[2], 1]) 

#--- Read reduced Wannier Hamiltonian and expand it: 

Hreduced = np.fromfile("wannier.mlwfH").reshape((kfoldProd,nBands,nBands)).swapaxes(1,2) 
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iReduced = np.dot(np.mod(cellMap, kfold[None,:]), kStride) 

Hwannier = Wwannier * Hreduced[iReduced] 

 

#Read the band structure k-points: 

kpointsIn = np.loadtxt('bandstruct.kpoints', skiprows=2, usecols=(1,2,3)) 

nKin = kpointsIn.shape[0] 

#--- Interpolate to a 10x finer k-point path: 

xIn = np.arange(nKin) 

x = 0.1*np.arange(1+10*(nKin-1)) #same range with 10x density 

kpoints = interp1d(xIn, kpointsIn, axis=0)(x) 

nK = kpoints.shape[0] 

 

#Calculate band structure from MLWF Hamiltonian: 

#--- Fourier transform from MLWF to k space: 

Hk = np.tensordot(np.exp((2j*np.pi)*np.dot(kpoints,cellMap.T)), Hwannier, axes=1) 

#--- Diagonalize: 

Ek,Vk = np.linalg.eigh(Hk) 

#--- Save: 

np.savetxt("wannier.eigenvals", Ek) 

 

The first two sections read in the MLWF data and set up the k-point path respectively; all the real action happens in two lines 

of code in the final block! 

 

The Bloch Hamiltonian Hk is calculated by Fourier transforming the MLWF-basis Hamiltonian, and then we obtain the 

eigenvalues at each k (the band structure) by diagonalizing Hk.  

 

Run the above script directly at the cluster: 

 
$ python3 WannierBandstruct.py 

 

and examine the output file "wannier.eigenvals": it is a text file with the eigenvalues for each band in a column. 

 

To obtain the bands from Wannier, scp the files bandstruct.kpoints, bandstruct.plot, and 

wannier.eigenvals from the ARCH cluster to your local computer. 

 

Modify the end of bandstruct.plot to compare the DFT and Wannier band structure: 

 
#Edit end of bandstruct.plot to the following: 

VBM = 0.213073  #HOMO or mu from totalE.eigStats 

eV = 1/27.2114  #in Hartrees 

nWan = 4        #number of bands from Wannier functions 

set xzeroaxis 

set yrange [:10] 

set ylabel "E - VBM [eV]" 

plot for [i=1:nCols] "bandstruct.eigenvals" binary format=formatString u 0:((column(i)-VBM)/eV) 

every 2 w p lc rgb "black" 

replot for [i=1:nWan] "wannier.eigenvals" u (0.1*$0):((column(i)-VBM)/eV) w l lt 1 

 

and run the gnuplot script: 

 
$ gnuplot --persist bandstruct.plot 
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The Wannier band structure (plotted as lines) indeed reproduces the DFT band structure (plotted as points) exactly. Since we 

only constructed MLWFs from the lowest four (occupied) bands, we get the interpolated Wannier band structure only for those 

bands. Extending Wannier band structure interpolation to unoccupied bands and metals requires handling Entangled bands as 

we discuss in the next session. 
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Hands-On 10 

Dielectric Function with Direct Transitions 

 
We start the hands-on session by going to the scratch directory, and creating and moving into a folder for this session: 

 
$ cd $SCRATCH 

$ mkdir HandsOn10; cd HandsOn10 

 

In this session we will learn how to calculate the maximally localized Wannier functions (MLWFs) of metals and other systems 

where the unoccupied states are of interest, with the example of Al. 

 

Entangled bands of aluminum 

 
We generalize from insulators and semiconductors where it is possible to single out sets of bands separated in energy from the 

rest to the more general case where the bands of interest are mixed in with other bands. This is relevant not only for metals, but 

also for semiconductors, when we are interested in representing the unoccupied states. Specifically, this tutorial constructs 

maximally localized Wannier functions (MLWFs) for aluminum and demonstrates accurate density-of-states calculations using 

Monte Carlo sampling. 

 

Let us start with copying and running the total energy and band structure calculations of Al from the Hands-On 8: 

 
$ cp $SCRATCH/HandsOn8/Al_totalE.in . 

$ mpirun -n 4 jdftx < Al_totalE.in > Al_totalE.out  

 

$ cp $SCRATCH/HandsOn8/Al_bandstruct.kpoints.in . 

$ bandstructKpoints Al_bandstruct.kpoints.in 0.05 bandstruct 

 

$ cp $SCRATCH/HandsOn8/Al_bandstruct.in . 

$ mpirun -n 4 jdftx < Al_bandstruct.in > Al_bandstruct.out  

 

If you ran this in a separate folder for Al, you could simply copy the folder here and continue instead of running it again.  

 

We would like Wannier functions that capture the band structure of aluminum for a few eV surrounding the Fermi level, which 

is the relevant range for optical properties of the metal, for example. However, note that there are no sets of bands that cover 

this range, but are completely separated in energy from all other bands. We will therefore adopt an alternate strategy: we will 

require that the Wannier functions capture the band structure within a range of energies called the inner window exactly, but 

we will include bands from a larger range of energies called the outer window in the optimization procedure. 

 

Specifically, let us work with 5 Wannier functions this time. In the band structure above, note that 5 bands can take us from the 

bottom of the valence bands approximately 11 eV below the Fermi level to just more than 9 eV above the Fermi level, where 

the sixth band starts (at the X point).  

 

Therefore, we will set our inner window from 12 eV below the Fermi level (to include the bottom completely) to 8 eV above, 

which corresponds to the eigenvalue range [-0.042,0.693] Hartrees. This includes mu = 0.399 Hartrees; the ranges in the input 

file are absolute and not relative to mu.  

 

For the outer window, we need to pick a range that contains at least five bands throughout the Brillouin zone: we can start at 

the same lower end as the inner window and extend to 17 eV above the Fermi level to satisfy this, which corresponds to the 

eigenvalue range [-0.042,1.024] Hartrees. 

 

With these parameters we can set up the Wannier input file: 
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$ more Al_wannier.in 

include Al_totalE.in 

 

wannier \ 

    innerWindow -0.042 0.693 \ 

    outerWindow -0.042 1.024 \ 

    saveMomenta yes 

 

wannier-center Gaussian -0.101403   0.435547   0.487558 

wannier-center Gaussian -0.443339   0.055289  -0.446398 

wannier-center Gaussian -0.361538  -0.010718   0.032397 

wannier-center Gaussian -0.296948   0.326939  -0.400117 

wannier-center Gaussian  0.030459  -0.158043  -0.194850 

 

wannier-initial-state Al.$VAR 

wannier-dump-name wannier.$VAR 

 

wannier-minimize nIterations 300 

 

This time we have specified five wannier-center commands with trial orbitals centered at random coordinates. Note the window 

specifications in the wannier command. We additionally specified saveMomenta which will cause the code to output 

momentum matrix elements in a file suffixed "mlwfP". (We will use that output in the next tutorial.) Starting from random 

trial orbitals usually requires more steps to converge, which is why we increased nIterations using wannier-

minimize. 

 

Run the MLWF optimization: 

 
$ mpirun -n 1 wannier < Al_wannier.in > Al_wannier.out  

 

and examine wannier.out. Check the final converged center coordinates and spreads.  

 

Use WannierBandstruct.py and bandstruct.plot from the previous tutorial to compare the DFT and MLWF-

interpolated band structures. Remember to change the number of Wannier bands in bandstruct.plot and to reference the energies 

to mu instead of VBM. 

 

 
 

• Try changing the initial random orbitals: do the converged centers change?  

 

• Also try adjusting the windows: what effect does the window size have on the minimized spread?  
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• Note the constraints on the window sizes: the inner window must contain at most five bands throughout, while the outer 

window must contain at least five bands throughout (for five wannier-centers).  

 

• Five was an arbitrary choice too: you could cover a greater energy range by including six or more wannier-centers. 

 

Density of States with Wannier functions: 

 

We can use the MLWF-basis Hamiltonian to calculate electronic properties accurately within the inner energy window. For 

example, the following script calculates the density of states: 

 
$ more wannierDOS.py 

#Save the following to WannierDOS.py: 

import numpy as np 

 

#Read the MLWF cell map, weights and Hamiltonian:     

cellMap = np.loadtxt("wannier.mlwfCellMap")[:,0:3].astype(int) 

Wwannier = np.fromfile("wannier.mlwfCellWeights") 

nCells = cellMap.shape[0] 

nBands = int(np.sqrt(Wwannier.shape[0] / nCells)) 

Wwannier = Wwannier.reshape((nCells,nBands,nBands)).swapaxes(1,2) 

#--- Get k-point folding from totalE.out: 

for line in open('Al_totalE.out'): 

    if line.startswith('kpoint-folding'): 

        kfold = np.array([int(tok) for tok in line.split()[1:4]]) 

kfoldProd = np.prod(kfold) 

kStride = np.array([kfold[1]*kfold[2], kfold[2], 1]) 

#--- Read reduced Wannier Hamiltonian and expand it: 

Hreduced = np.fromfile("wannier.mlwfH").reshape((kfoldProd,nBands,nBands)).swapaxes(1,2) 

iReduced = np.dot(np.mod(cellMap, kfold[None,:]), kStride) 

Hwannier = Wwannier * Hreduced[iReduced] 

 

#Calculate DOS by Monte-Carlo sampling: 

nBlocks = 100  #number of blocks 

nK = 1000      #number of k per block 

EkAll = np.zeros((nBlocks,nK,nBands)) 

for iBlock in range(nBlocks): 

    kpoints = np.random.rand(nK,3)          #Generate random k 

    Hk = np.tensordot(np.exp((2j*np.pi)*np.dot(kpoints,cellMap.T)), Hwannier, axes=1) 

    Ek,Vk = np.linalg.eigh(Hk)              #Diagonalize 

    EkAll[iBlock] = Ek                      #Save energies 

    print("Block", iBlock+1, "of", nBlocks) #Report progress 

#--- Histogram: 

nBins = 400 

hist,binEdges = np.histogram(EkAll, nBins, density=True) 

hist *= (2*nBands)  #Integral should be 2 nBands but np.histogram normalizes to 1 

bins = 0.5*(binEdges[1:]+binEdges[:-1])  #bin centers 

#--- Save: 

outData = np.vstack((bins,hist)).T #Put together in columns 

np.savetxt("wannier.dos", outData) 

 

The initial setup is the same as WannierBandstruct.py, but then we calculate eigenvalues on random k-points in the 

Brillouin zone. We are using a total of 100000 k-points above, but split it into 100 blocks of 1000 k-points each for reducing 

memory usage, especially to keep the size of the dot(kpoints, cellMap.T) matrix manageable. Finally, we histogram the 

computed eigenvalues to get the density of states. 

 
$ python3 WannierDOS.py 

 

will generate wannier.dos file which you can plot to obtain the density of states: 
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The Wannier DOS tracks the DFT one on the inner window, but not outside it. Within the inner window, notice that the Wannier 

DOS smooths over the spikes in the DFT DOS. Those spikes are artifacts of low-density regular k-point meshes; the Monte-

Carlo sampling used 50 times as many k points and samples the Brillouin zone more evenly (no special planes / orientations), 

thereby avoiding these issues. 

 

Direct transitions 

 
This tutorial will introduce more complicated post-processing techniques using MLWF-based ab initio tight-binding models. 

Here, we will calculate the frequency-dependent imaginary part of the dielectric function for aluminum, accounting for direct 

interband transitions. 

 

The simplest mechanism of light absorption in materials is the direct excitation of an electron from an occupied state to an 

unoccupied state, absorbing one photon. Energy conservation requires that the difference between these states equals the energy 

of the photon. In solids, momentum conservation implies that the initial and final state are at the same k-point because photons 

have negligible momentum at the electronic scale. Using perturbation theory and Fermi's golden rule, we can calculate the rate 

of this process for a given light intensity. From this rate, we can determine the corresponding imaginary part of the dielectric 

function as: 

 

Im𝜖(𝜔) =
4𝜋2e2

3𝑚e𝜔2Ω
∫

2𝑑𝑘⃗ 

VBZ
∑(𝑓𝑘⃗ 𝑛 − 𝑓𝑘⃗ 𝑛′)𝛿(𝜀𝑘⃗ 𝑛′ − 𝜀𝑘⃗ 𝑛 − ℏ𝜔)

𝑛′𝑛BZ

|〈𝑝 〉𝑛′𝑛
𝑘⃗ |

2
 

 

where Ω is the unit cell volume, 𝜀𝑘⃗ 𝑛 and 𝑓𝑘⃗ 𝑛 are Kohn-Sham eigenvalues and occupations respectively, and 〈𝑝 〉𝑛′𝑛
𝑘⃗  are the 

momentum matrix elements connecting band n and n' at Bloch wave-vector k. The integral averages over the Brillouin zone, 

and the delta function implements energy conservation. See paper by A.M Brown et al., [ACS Nano, 10, 1, 957–966 (2016)] 

for more details. Small differences here include a factor of 2 for spin degeneracy since we will use a non-relativistic calculation, 

and an average over spatial directions for an isotropic material that yields the factor of 3 in the denominator. 

 

In the previous tutorial, we generated an ab initio tight-binding Hamiltonian for aluminum, which allows us to calculate the 

Kohn-Sham eigenvalues at arbitrary k. The occupation factors are 1 for eigenvalues smaller than mu, and 0 for those greater 

than mu. (The intermediate occupations for eigenvalues within kBT of mu contribute negligibly for optical properties.) We also 

output the momentum matrix elements using the saveMomenta option of the wannier command. We will now use these 

outputs to calculate ImEps for aluminum using the python script below: 

 
$ more WannierImEps.py 

#Save the following to WannierImEps.py: 

import numpy as np 

 

#Read the MLWF cell map, weights and Hamiltonian:     

cellMap = np.loadtxt("wannier.mlwfCellMap")[:,0:3].astype(int) 
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Wwannier = np.fromfile("wannier.mlwfCellWeights") 

nCells = cellMap.shape[0] 

nBands = int(np.sqrt(Wwannier.shape[0] / nCells)) 

Wwannier = Wwannier.reshape((nCells,nBands,nBands)).swapaxes(1,2) 

#--- Get k-point folding from totalE.out: 

for line in open('Al_totalE.out'): 

    if line.startswith('kpoint-folding'): 

        kfold = np.array([int(tok) for tok in line.split()[1:4]]) 

kfoldProd = np.prod(kfold) 

kStride = np.array([kfold[1]*kfold[2], kfold[2], 1]) 

#--- Read reduced Wannier Hamiltonian, momenta and expand them: 

Hreduced = np.fromfile("wannier.mlwfH").reshape((kfoldProd,nBands,nBands)).swapaxes(1,2) 

Preduced = np.fromfile("wannier.mlwfP").reshape((kfoldProd,3,nBands,nBands)).swapaxes(2,3) 

iReduced = np.dot(np.mod(cellMap, kfold[None,:]), kStride) 

Hwannier = Wwannier * Hreduced[iReduced] 

Pwannier = Wwannier[:,None] * Preduced[iReduced] 

 

#Constants / calculation parameters: 

mu = 0.399     #in Hartrees 

eV = 1/27.2114 #in Hartrees 

omegaMax = 6*eV #maximum photon energy to consider 

Angstrom = 1/0.5291772 #in bohrs 

aCubic = 4.05*Angstrom #in bohrs 

Omega = (aCubic**3)/4  #cell volume 

 

#Calculate ImEps by Monte-Carlo sampling of the BZ integral: 

nBlocks = 100  #number of blocks 

nK = 1000      #number of k per block 

prefactor = 8*(np.pi**2)/(3.*Omega*nK*nBlocks) #Note me=e=hbar=1 in atomic units 

omegaAll = []  #Frequencies of transitions 

weightAll = [] #Corresponding weights 

for iBlock in range(nBlocks): 

    kpoints = np.random.rand(nK,3)         #Generate random k 

    Hk = np.tensordot(np.exp((2j*np.pi)*np.dot(kpoints,cellMap.T)), Hwannier, axes=1) 

    Pk = np.tensordot(np.exp((2j*np.pi)*np.dot(kpoints,cellMap.T)), Pwannier, axes=1) 

    Ek,Vk = np.linalg.eigh(Hk)             #Diagonalize 

 

    Pk = np.einsum("kba,kpbc,kcd->kpad",   #Sum using Einstein notation for 

        Vk.conjugate(), Pk, Vk)            #transforming Pk to eigenbasis 

 

    #Vectorized loop over pairs of states: 

    Ei = np.repeat(Ek[:,:,np.newaxis], nBands, axis=2).flatten() #Initial energy 

    Ef = np.repeat(Ek[:,np.newaxis,:], nBands, axis=1).flatten()   #Final energy 

    omega = Ef - Ei                                           #Energy difference 

    Psq = np.sum(np.abs(Pk)**2, axis=1).flatten()        #Matrix element squared 

 

    sel = np.where(  #Select valid transitions: 

        (Ei < mu) &        #initial state occupied 

        (Ef > mu) &        #final state unoccupied 

        (omega < omegaMax) #energy difference in range 

    )[0] 

    omegaAll.append(omega[sel]) 

    weightAll.append(prefactor * Psq[sel] / (omega[sel]**2)) 

    print("Block", iBlock+1, "of", nBlocks) #Report progress 

 

#Histogram: 

nBins = 200 

omegaAll = np.concatenate(omegaAll) 

weightAll = np.concatenate(weightAll) 

hist,binEdges = np.histogram(omegaAll, nBins, weights=weightAll, density=True) 

hist *= np.sum(weightAll)  #Integral should be sum(weights), but np.histogram normalizes to 1 

bins = 0.5*(binEdges[1:]+binEdges[:-1])  #bin centers 

#--- Save: 
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outData = np.vstack((bins/eV,hist)).T #Put together in columns, converting omega to eV 

np.savetxt("wannier.ImEps", outData) 

 

The overall structure is quite similar to WannierDOS.py from the previous tutorial. In addition to the Hamiltonian, now we 

also transform the momentum matrix elements, first from MLWF to k space, and then to the Kohn-Sham eigenbasis. Then the 

code considers pairs of states at each k-point and finds transitions that contribute to light absorption at relevant frequencies. 

Finally, these transitions are histogrammed by frequency, appropriately weighted by the matrix elements, to calculate ImEps as 

a function of frequency. 

 

Running this python script: 

 
$ python3 WannierImEps.py 

 

generates the wannier.ImEps file, which can be ploted using gnuplot: 

 

 
and can be compared with experiments as shown in figure from the jdftx tutorials website: 

 
Note the excellent agreement with experimental results (from ellipsometry measurements; Palik handbook) for high 

frequencies. At low frequencies, the experimental measurements are larger because they also include contributions due to 

intraband transitions. Additionally, the peak at 1.5 eV is sharper in theory than experiment because we did not account for 

carrier broadening effects. Accounting for these additional mechanisms and broadening effects results in much better agreement 

with experiment as shown here. 

 

 


