AB INITIO THEORY

Fulfillment of a 2,500 year quest:

At one time through love all things come together into one, at another time through strife's hatred, they are borne each of them apart. -Empedocles

Ab initio theory

Empedocles (450 BC)

- Basic constituents
 - Earth, Air, Fire, Water
- Basic interactions
 - Love, Strife
- Method of Inquiry
 Philosophical dielectic

Modern Science

- Basic constituents
 - Electrons, Nuclei
- Basic interactions
 Electric Force
- Method of Inquiry

 Schrödinger Equation

LATTICE CONSTANT, ENERGY, BULK MODULUS

		a (Å)	E_0 (eV per MgO)	$B = \frac{C_{11} + 2C_{12}}{3}$ (Mbar)	
z c	Expt	4.21	10.33	1.55-1.62	
	LDA	4.161 (1.1%)	11.80 (+14%)	1.71 (+7.9%)	
	GGA	4.221 (+0.3%)	10.4 (+0.7%)	1.64 (+3.4%)	
	Daykov, Engeness, Arias, <i>PRL</i> DOI: 10.1103/PhysRevLett.90.216402				

EQUILIBRIA BETWEEN QUANTUM MECHANICAL AND CLASSICAL FLUID SYSTEMS: POTENTIALS OF ZERO CHARGE

HYPERFINE COUPLINGS (NUCLEAR-SPIN WITH ELECTRON SPIN)

ANGULAR RESOLVED PHOTOEMISSION (ARPES)

Niedzielski and Arias, in preparation

INELASTIC HELIUM ATOM SCATTERING (HAS)

Kelley, Sundararaman, Arias, DOI: 10.48550/arXiv.2306.01892

SUPERCONDUCTIVITY IN RANDOM AND ORDERED ALLOYS

DISTRIBUTION OF PHOTOEMITTED ELECTRONS

MANY-BODY THEORY

The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.

-PAM Dirac, 1929

QUANTUM MECHANICS OF MATERIAL SYSTEMS

$$\widehat{H} = \widehat{T} + \widehat{V} = \widehat{T}_e + \widehat{T}_N + \widehat{V}_{NN} + \widehat{V}_{ee} + \widehat{V}_{eN}$$

$$= \sum_i \left(-\frac{\hbar^2}{2m_e} \nabla_i^2 \right) + \sum_I \left(-\frac{\hbar^2}{2M_I} \nabla_I^2 \right) + \frac{1}{2} \sum_{I \neq J} \frac{k_c(Z_I e)(Z_I e)}{\left| \overrightarrow{R}_I - \overrightarrow{R}_J \right|} - e, \overrightarrow{r}_i$$

$$+ \frac{1}{2} \sum_{i \neq j} \frac{k_c(-e)(-e)}{\left| \overrightarrow{r}_i - \overrightarrow{r}_j \right|} + \sum_{Ii} \frac{k_c(-e)(Z_I e)}{\left| \overrightarrow{r}_i - \overrightarrow{R}_I \right|} + Z_I e, \overrightarrow{R}_I$$

QUANTUM MECHANICS OF MATERIAL SYSTEMS

Must solve ... $\hat{H} \Psi_n(\vec{R}_1, \vec{R}_2, ...; \vec{r}_1, \vec{r}_2, ...) = E_n \Psi_n(\vec{R}_1, \vec{R}_2, ...; \vec{r}_1, \vec{r}_2, ...)$

Even for a coarse $10 \times 10 \times 10$ grid ... • each particle has 1000 choices • resulting in $1000^{3+10} = 10^{39}$ arrangements • requiring 10^{39} c-numbers x 16 B/c-num = 1.6×10^{40} B $\approx 10^{19}$ ZB $\approx 10^{18}$ x [internet]

BORN-OPPENHEIMER APPROXIMATION

- *M_I* > 1800 *m_e* ⇒ *e*⁻'s move, respond much quicker than nuclei
 Treat nuclei as stationary (put back their motion later):
 - $\hat{T}_N = 0, \ \hat{V}_{NN} = \text{constant} \Rightarrow \hat{H} = V_{NN} + \hat{T}_e + \hat{V}_{ee} + \hat{V}_{eN}$

$$\begin{split} V_{NN}(\vec{R}_1, \vec{R}_2, \dots) &= \frac{1}{2} \left(k_c e^2 \right) \sum_{I \neq J} \frac{Z_I Z_J}{\left| \vec{R}_I - \vec{R}_J \right|} \quad \hat{T}_e = -\frac{1}{2} \left(\frac{\hbar^2}{m_e} \right) \sum_i \nabla_i^2 \\ \hat{V}_{eN}(\vec{R}_1, \vec{R}_2, \dots) &= -\left(k_c e^2 \right) \sum_{i, I} \frac{1}{\left| \vec{r}_i - \vec{R}_I \right|} \quad \hat{V}_{ee} = \frac{1}{2} \left(k_c e^2 \right) \sum_{i \neq J} \frac{1}{\left| \vec{r}_i - \vec{r}_j \right|} \end{split}$$

 \vec{r}_i

 \vec{R}

ATOMIC UNITS

$$\widehat{H}(\vec{R}_{1},\vec{R}_{2},...) = V_{NN} + \widehat{T}_{e} + \widehat{V}_{ee} + \widehat{V}_{eN}$$
$$V_{NN}(\vec{R}_{1},\vec{R}_{2},...) = \frac{1}{2}(k e^{2}) \sum_{I \neq J} \frac{Z_{I}Z_{J}}{\left|\vec{R}_{I} - \vec{R}_{J}\right|}$$

$$\hat{V}_{eN}(\vec{R}_1, \vec{R}_2, \dots) = -(k/2) \sum_{i,I} \frac{1}{\left|\vec{r}_i - \vec{R}_I\right|}$$

<u>Choose</u>:

 $k_c e^2 = 1 \text{ E L}, \quad \hbar^2/m_e = 1 \text{ E L}^2$ $\Rightarrow 1 \text{ E} = 1 \text{ hartree} \approx 27.21 \text{ eV}, 1 \text{ L} = 1 \text{ bohr} \approx 0.5291 \text{ Å}$

 $\hat{T}_e = -\frac{1}{2} \left(\frac{n^2}{m} \right)$

 $\hat{V}_{ee} = \frac{1}{2} (k_{e} z^{2}) \sum_{i \neq j} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|}$

 \vec{R}_{I}

 ∇_i^2

$$\frac{\text{ATOMIC UNITS}}{\hat{H}(\vec{R}_{1}, \vec{R}_{2}, \dots) = V_{NN} + \hat{T}_{e} + \hat{V}_{ee} + \hat{V}_{eN}}$$

$$\frac{V_{NN}(\vec{R}_{1}, \vec{R}_{2}, \dots) = \frac{1}{2} \sum_{I \neq J} \frac{Z_{I}Z_{J}}{\left|\vec{R}_{I} - \vec{R}_{J}\right|}$$

$$\hat{V}_{eN}(\vec{R}_{1}, \vec{R}_{2}, \dots) = -\sum_{i, I} \frac{1}{\left|\vec{r}_{i} - \vec{R}_{I}\right|}$$

 $[\Rightarrow 1 \text{ E} = 1 \text{ hartree} \approx 27.21 \text{ eV}, 1 \text{ L} = 1 \text{ bohr} \approx 0.5291 \text{ Å}]$

 \widehat{T}_e

 $\widehat{V}_{ee} = \frac{1}{2} \sum_{i \neq j} \frac{1}{\left| \vec{r}_i - \vec{r}_j \right|}$

 $ec{R}_I$

NEED FOR ADDITIONAL SIMPLIFICATIONS

Now, must solve ... $\widehat{H}(\vec{R}_1, \vec{R}_2, ...) \Psi_n(\vec{r}_1, \vec{r}_2, ...) = E_n(\vec{R}_1, \vec{R}_2, ...) \Psi_n(\vec{r}_1, \vec{r}_2, ...)$

Even for a coarse 10 x 10 x 10 grid ...
each particle has 1000 choices
resulting in 1000¹⁰ = 10³⁰ arrangements
requiring 10³⁰ c-numbers x 16 B/c-num = 1.6 x 10³¹ B ≈ 10¹⁰ ZB ≈ 10⁹ x [internet]

Saved 9 orders of magnitude (😂 !), need more... (🗃)

For more information see...

"Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients," by M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

- DOI: 10.1103/RevModPhys.64.1045

- bit.ly/43EPjXF

THANK YOU!

TAA2@CORNELL.EDU

SCAN