PRACTICAL APPROACHES AND APPROXIMATIONS

Laws are like sausages; it is better not to see them being made.

-Otto von Bismarck

Making quality sausage requires watching the process.

-Tomás Arias, 2023

- Practical approximations for $E_{xc}[n(\vec{r})]$
- Computational representation of $\psi_i(\vec{r})$
- Numerical minimization
- Plane wave cutoff E_{cut}
- Pseudopotentials (help reduce E_{cut})

FULL, EXACT THEORY (ONE SLIDE!
$$\textcircled{C}$$
)

$$E_{act theory!!}$$

$$E_{0} = V_{NN} + \min_{\{\psi_{i}(\vec{r})\}} \left(\begin{array}{c} \sum_{i} f_{i} \int \left(-\frac{1}{2}\right) \psi_{i}^{*}(\vec{r}) \nabla^{2} \psi_{i}(\vec{r}) \, dV + \\ E_{H}[n(\vec{r})] + E_{xc}[n(\vec{r})] + \int V_{nuc}(\vec{r}) n(\vec{r}) \, dV \end{array} \right)$$
where,

$$V_{NN} = \frac{1}{2} \sum_{I \neq J} \frac{Z_{I}Z_{J}}{|\vec{R}_{I} - \vec{R}_{J}|} \quad V_{nuc}(\vec{r}) = -\sum_{I} \frac{Z_{I}}{|\vec{r} - \vec{R}_{I}|} \quad n(\vec{r}) = \sum_{i} f_{i} |\psi_{i}(\vec{r})|^{2}$$

$$E_{H}[n(\vec{r})] = \frac{1}{2} \int dV \int dV' \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|}$$
What about $E_{xc}[n(\vec{r})] ? ...$

APPROXIMATE EXCHANGE-CORRELATION FUNCTIONALS $V_{ee}[n(\vec{r})] = \frac{1}{2} \int dV n(\vec{r}) \int dV' \frac{n(\vec{r}'|\vec{r})}{|\vec{r}-\vec{r}'|} = \frac{1}{2} \int dV n(\vec{r}) \int dV' \frac{n(\vec{r}')+h(\vec{r}'|\vec{r})}{|\vec{r}-\vec{r}'|}$ $= E_H[n(\vec{r})] + \int dV n(\vec{r}) \frac{1}{2} \int dV' \frac{h(\vec{r}'|\vec{r})}{|\vec{r}-\vec{r}'|} = E_H[n(\vec{r})] + E_{xc}[n(\vec{r})]$ • Assume `hole' is the same as in a <u>uniform</u> electron gas at the local density $n(\vec{r})$ • Then, correction for each e^- at r depends only on $n(\vec{r})$ $E_{xc}[n(\vec{r})] \approx E_{xc}^{LDA}[n(\vec{r})] \equiv \int dV n(\vec{r}) \epsilon_{xc}(n(\vec{r}))$

 $n(ec{r}'|ec{r})$

 $n(\vec{r}'|\vec{r})$

 Fit ε_{xc}(n) to asymptotic behavior and numerical data for uniform e⁻ gas APPROXIMATE EXCHANGE-CORRELATION FUNCTIONALS $V_{ee}[n(\vec{r})] = \frac{1}{2} \int dV n(\vec{r}) \int dV' \frac{n(\vec{r}'|\vec{r})}{|\vec{r}-\vec{r}'|} = \frac{1}{2} \int dV n(\vec{r}) \int dV' \frac{n(\vec{r}')+h(\vec{r}'|\vec{r})}{|\vec{r}-\vec{r}'|}$ $= E_H[n(\vec{r})] + \int dV n(\vec{r}) \frac{1}{2} \int dV' \frac{h(\vec{r}'|\vec{r})}{|\vec{r}-\vec{r}'|} = E_H[n(\vec{r})] + E_{xc}[n(\vec{r})]$ • Assume `hole' is the same as in electron gas with same $n(\vec{r})$ and $\nabla n(\vec{r})$ • Then, correction for each e^- at r depends only on $n(\vec{r})$ and $\nabla n(\vec{r})$ $E_{xc}[n(\vec{r})] \approx E_{xc}^{GGA}[n(\vec{r})] \equiv \int dV n(\vec{r}) \epsilon_{xc}(n(\vec{r}), \nabla n(\vec{r}))$

 $n(ec{r}'|ec{r})$

 $n(\vec{r}'|\vec{r})$

Fit
 ε_{xc}(*n*, ∇*n*) to asymptotic/numerical data for uniform *e⁻* gas

FULL THEORY (ONE SLIDE! ())

$$E_{0} = V_{NN} + \min_{\{\psi_{i}(\vec{r})\}} \left(\sum_{i} f_{i} \int \left(-\frac{1}{2}\right) \psi_{i}^{*}(\vec{r}) \nabla^{2} \psi_{i}(\vec{r}) \, dV + E_{nuc}(\vec{r}) \right) + \int V_{nuc}(\vec{r}) n(\vec{r}) \, dV + E_{nuc}(\vec{r}) + \int V_{nuc}(\vec{r}) n(\vec{r}) \, dV \right)$$
where,

$$V_{NN} = \frac{1}{2} \sum_{l \neq J} \frac{Z_{l}Z_{J}}{|\vec{R}_{l} - \vec{R}_{J}|} \quad V_{nuc}(\vec{r}) = -\sum_{l} \frac{Z_{l}}{|\vec{r} - \vec{R}_{l}|} \quad n(\vec{r}) = \sum_{i} f_{i} |\psi_{i}(\vec{r})|^{2}$$

$$E_{H}[n(\vec{r})] = \frac{1}{2} \int dV \int dV' \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|} E_{xc}^{GGA}[n(\vec{r})] = \int dV n(\vec{r}) \epsilon_{xc}(n(\vec{r}), \nabla n(\vec{r}))$$

$$V_{NN} \text{ and } V_{nuc} \text{ computable from } \vec{R}_{l}.$$
 To represent continuous $\psi_{i}(\vec{r}) \dots$

FULL THEORY (ONE SLIDE!)

$$E_{0} = V_{NN} + \min_{\{\psi_{i}(\vec{r})\}} \left(\sum_{i} f_{i} \int \left(-\frac{1}{2}\right) \psi_{i}^{*}(\vec{r}) \nabla^{2} \psi_{i}(\vec{r}) \, dV + E_{nuc}(\vec{r}) \right) + \int V_{nuc}(\vec{r}) n(\vec{r}) \, dV + E_{nuc}(\vec{r}) + \int V_{nuc}(\vec{r}) n(\vec{r}) \, dV \right)$$
where,

$$V_{NN} = \frac{1}{2} \sum_{l \neq J} \frac{Z_{l} Z_{J}}{|\vec{R}_{l} - \vec{R}_{J}|} \quad V_{nuc}(\vec{r}) = -\sum_{l} \frac{Z_{l}}{|\vec{r} - \vec{R}_{l}|} \quad n(\vec{r}) = \sum_{i} f_{i} |\psi_{i}(\vec{r})|^{2}$$

$$E_{H}[n(\vec{r})] = \frac{1}{2} \int dV \int dV' \frac{n(\vec{r})n(\vec{r}')}{|\vec{r} - \vec{r}'|} E_{xc}^{GGA}[n(\vec{r})] = \int dV n(\vec{r}) \epsilon_{xc}(n(\vec{r}), \nabla n(\vec{r}))$$
Expand $\psi_{i}(\vec{r}) = \sum_{\vec{G}} C_{i,\vec{G}} e^{i\vec{G}\cdot\vec{r}}$ and re-express $E_{0} = \min_{c_{i,\vec{G}}} E_{0}(C_{i,\vec{G}})$, then minimize ...

- Practical approximations for $E_{xc}[n(\vec{r})]$
- Computational representation of $\psi_i(\vec{r})$
- Numerical minimization
- Plane wave cutoff $E_{\rm cut}$
- Pseudopotentials (help reduce E_{cut})

MINIMIZATION AND ITERATIVE <u>CONVERGENCE</u>

- To minimize $E_0(C_{i,\vec{G}})$...
- **Steepest Descent:**
- Make initial guess for $C_{i,\vec{G}}$
- $\mathcal{O} C_{i,\vec{G}} \leftarrow C_{i,\vec{G}} \varepsilon \nabla E_0(C_{i,\vec{G}})$
- Stop when results stop changing

• <u>Always</u> verify iterative convergence (😟)

- Practical approximations for $E_{xc}[n(\vec{r})]$
- Computational representation of $\psi_i(\vec{r})$
- Numerical minimization
- Plane wave cutoff $E_{\rm cut}$
- Pseudopotentials (help reduce E_{cut})

BASIS-SET EXPANSION AND PLANE-WAVE <u>CONVERGENCE</u> For finite calculation, let $\psi_i(\vec{r}) = \sum_{\vec{G}} C_{i,\vec{G}} e^{i\vec{G}\cdot\vec{r}}$ for all $|\vec{G}| < G_c$

• Characterize G_c using $E_{cut} \equiv \frac{1}{2} G_c^2$

 For each new material, <u>always</u> verify convergence w.r.t. E_{cut} (②)

- Practical approximations for $E_{xc}[n(\vec{r})]$
- Computational representation of $\psi_i(\vec{r})$
- Numerical minimization
- Plane wave cutoff E_{cut}
- Pseudopotentials (help reduce E_{cut})

PSEUDOPOTENTIALS & <u>VERIFICATION</u>

• Atomic orbitals $\psi(\vec{r}) \sim e^{-Z_{
m scr} r/n}$

- Core *e*'s tightly bound
 - need high resolution & E_{cut}
 - many of them
 - chemically inert
 - Replace nucleus + core electrons with effective, pseudopotential with same scattering properties for valence electrons!
- For each new element, <u>always</u> verify by computing known physical quantities (😟)

28 core

7 valence

THANK YOU!

TAA2@CORNELL.EDU