PRACTICAL APPROACHES AND APPROXIMATIONS II

Laws are like sausages; it is better not to see them being made.

-Otto von Bismarck

Making quality sausage requires watching the process.

-Tomás Arias, 2023

- Periodicity and aperiodic systems
- Specifying periodic systems
- The cost of periodicity: Bloch's theorem
- Metals and effective electron temperatures

PERIODICITY AND SUPERCELL CONVERGENCE

- Periodicity replaces macroscopic crystal with manageable unit cell
- Aperiodic systems can be embedded in a periodic "supercell"
 - isolated molecules
 - impurities, vacancies, antisite defects
 - surfaces, grain boundaries
 - step edges, dislocations
- <u>Always</u> verify convergence with supercell size (②)

- Periodicity and aperiodic systems
- Specifying periodic systems
- The cost of periodicity: Bloch's theorem
- Metals and effective electron temperatures

PERIODIC SYSTEMS

Lattice: Set of locations { R } of all equivalent unit cells
 Generally, any R can be written in terms of "primitive" lattice vectors R , R , R , R ; R = n R , H + n R , R , R ;
 Note: R , R , R , can be any linearly independent vectors, need not be orthogonal or equal lenghts!

 \vec{R}

 \vec{R}_3 /

PERIODIC SYSTEMS

- <u>Lattice</u>: Set of locations $\{\vec{R}\}$ of all equivalent unit cells • Generally, any \vec{R} can be written in terms of "primitive" lattice vectors $\vec{R}_1, \vec{R}_2, \vec{R}_3$: $\vec{R} = n_1 \vec{R}_1 + n_2 \vec{R}_2 + n_3 \vec{R}_3$
- <u>Basis</u>: Locations $\{\vec{\tau}\}$ of atoms within each cell, relative to the origin of that cell: $\vec{r}_{atom} = \vec{R} + \vec{\tau}_{atom}$
- <u>Wyckoff/"lattice" coordinates</u>: atomic locations **expressed as fractions of primitive lattice vectors**: $\vec{\tau} = x_1 \vec{R}_1 + x_2 \vec{R}_2 + x_3 \vec{R}_3$ (generally $0 \le x_{\alpha} < 1$)

- Periodicity and aperiodic systems
- Specifying periodic systems
- The cost of periodicity: Bloch's theorem
- Metals and effective electron temperatures

BLOCH'S THEOREM I AND K-POINT CONVERGENCE

 $n(\vec{r}), |\psi_i(\vec{r})|^2$ • Periodicity \Rightarrow all cells are physically identical $n(\vec{r} + \vec{R}_{\alpha}) = n(\vec{r})$ for lattice vectors \vec{R}_{α} ($\alpha = 1, 2, 3$) \vec{R}_1 Wave functions have unobservable phase, so we can only say $\left|\psi_i\left(\vec{r}+\vec{R}_{\alpha}\right)\right|^2 = |\psi_i(\vec{r})|^2$ $\Rightarrow \psi_i \left(\vec{r} + \vec{R}_{\alpha} \right) = e^{i\phi_{\alpha}} \psi_i(\vec{r})$ with $\phi_{\alpha} \in [0, 2\pi)$ • All $\phi_{\alpha} \in [0,2\pi)$ possible and must be included: $\sum_{i} \leftarrow \iiint_{[0,2\pi]^3} d^3 \phi$ • Integrated by sampling of $[0,2\pi]^3$ with $N_1 \times N_2 \times N_3$ "k-point" grid <u>Always</u> verify convergence with k-point sampling (())

đ

BLOCH'S THEOREM II AND K-POINT SCALING CONVERGENCE

- $\psi_i(\vec{r} + \vec{R}_{\alpha}) = e^{i\phi_{\alpha}} \psi_i(\vec{r})$ with $\phi_{\alpha} \in [0, 2\pi)$
- Consider $\psi_i(\vec{r}) \sim e^{i\vec{k}\cdot\vec{r}}$: $e^{i\vec{k}\cdot(\vec{r}+\vec{R}_{\alpha})} = e^{i\vec{k}\cdot\vec{R}_{\alpha}} e^{i\vec{k}\cdot\vec{r}}$ • Physically, interpret $\phi_{\alpha} = \vec{k}\cdot\vec{R}_{\alpha}$ and solve for \vec{k}
- All states $\psi_i(\vec{r})$ have an associated \vec{k} \Rightarrow index all with same \vec{k} with $n=1,2,...:\psi_i(\vec{r}) \equiv \psi_{n\vec{k}}(\vec{r})$

 \vec{k}

 $n(\vec{r}), |\psi_i(\vec{r})|^2$ **BLOCH'S THEOREM III** \vec{R}_1 • So far, for $\psi_i(\vec{r})$, $i = \{n\vec{k}\}$ and $\phi_{\alpha} = \vec{k} \cdot \vec{R}_{\alpha}$... $\psi_{n\vec{k}}(\vec{r}+\vec{R}_{\alpha})=e^{i\vec{k}\cdot\vec{R}_{\alpha}}\psi_{n\vec{k}}(\vec{r})$ [standard form 1] Alternate form of Blocks theorem $\psi_{n\vec{k}}(\vec{r}) \equiv e^{i\vec{k}\cdot\vec{r}} u_{n\vec{k}}(\vec{r}), \ u_{n\vec{k}}(\vec{r}+\vec{R}_{\alpha}) = u_{n\vec{k}}(\vec{r}) \quad \text{[standard form 2]}$ $u_{n\vec{k}}(\vec{r})$ wave periodic envelope part part $e^{i\vec{k}\cdot\vec{r}}$ Proof: $u_{n\vec{k}}(\vec{r}) \equiv e^{-i\vec{k}\cdot\vec{r}}\psi_{n\vec{k}}(\vec{r})$ $\Rightarrow u_{n\vec{k}}(\vec{r} + \vec{R}_{\alpha}) = e^{-i\vec{k}\cdot(\vec{r} + \vec{R}_{\alpha})}\psi_{n\vec{k}}(\vec{r} + \vec{R}_{\alpha})$ $= e^{-i\vec{k}\cdot(\vec{r}+\vec{P_{0}})}e^{i\vec{k}\cdot\vec{P_{0}}}\psi_{n\vec{k}}(\vec{r}) = e^{-i\vec{k}\cdot\vec{r}}\psi_{n\vec{k}}(\vec{r}) = u_{n\vec{k}}(\vec{r}) \checkmark$

- Periodicity and aperiodic systems
- Specifying periodic systems
- The cost of periodicity: Bloch's theorem
- Metals and effective electron temperatures

FERMI OCCUPANCY & ELECTRON TEMPERATURE CONVERGENCE

 Electron density (kinetic energy similar story)
 n(r
) = Σ_i f_i |ψ_i(r
)|² = Σ<sub>nk
 </sub> f<sub>nk
 </sub> |ψ<sub>nk
 </sub>(r
)|²

 At *T*=0, obtain min E₀ by filling lowest energy states first (Aufbau)

FERMI OCCUPANCY & ELECTRON TEMPERATURE CONVERGENCE

$$f_{n\vec{k}} = \begin{cases} 1,2 \text{ if } \epsilon_{n\vec{k}} \leq \epsilon_{\text{Ferm}} \\ 0 \text{ if } \epsilon_{n\vec{k}} > \epsilon_{\text{Fermi}} \end{cases}$$

Semiconductor: completely filled bands: all k=points contribute ()
 Metal: Fermi-level cuts band(s), contributing regions are complicated ()

FERMI OCCUPANCY & ELECTRON TEMPERATURE CONVERGENCE

For metals, contributing regions are complicated ()
DFT generalizes to T>0 !

 $\Rightarrow f_{n\vec{k}} = \frac{1}{e^{(\epsilon_{n\vec{k}} - \mu)/k_B T_{+1}}}$ (Fermi-Dirac distribution) • F-D distribution is smooth and easier to integrate ()! • Higher *T* needs fewer k-points, with mild impact on results \Rightarrow Use elevated *T* (~4*T*_{room}), and <u>verify</u> *T* \rightarrow 0 convergence ())

SUMMARY OF ISSUES TO MANAGE

- Choice of approximate functional (E^{LDA}_{xc}[n(r)], E^{GGA}_{xc}[n(r)], etc.)
 GGA is usually sufficient (maybe DFT+U for oxides, hybrid for subtle chemistry)
- Iterative convergence (always)
- Plane-wave cutoff E_{cut} (always, once for each new element/pseudopotential)
- Pseudopotential choice (once for each new element, especially exotica)
 Verify against experimental data for first use
- Supercell (aperiodic systems only)
- k-points (always, but scales inversely with supercell size)
- Electron Temperature (metals only, for every new compound)

THANK YOU!

TAA2@CORNELL.EDU