ATOMIC FORCES

An object that is at rest will tend to remain at rest. An object that is in motion will tend to remain in motion unless acted upon by an outside force.

-Isaac Newton

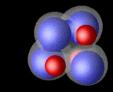
THIS LECTURE

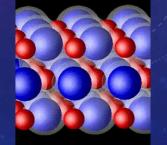
- Atomic motion and *ab initio* computation of forces
- Ab initio molecular dynamics (AIMD)
- Equilibrium structures and phases

ATOMIC MOTIONS

- Born-Oppenheimer: e^{-r} 's adjust instantaneously to atomic locations $\Rightarrow E_0(\vec{R}_1, \vec{R}_2, ..., \vec{R}_N)$
- Atoms sufficiently heavy to be treated classically (most cases) $\lambda_{\text{th}} = \frac{h}{\sqrt{2\pi M k_B T}} \approx 0.19 \text{ Å (Si), } 0.29 \text{ Å (C)} \quad \textcircled{O} \qquad 1.01 \text{ Å (H)} \quad \textcircled{O} \qquad 2PE = \frac{1}{2} \hbar \sqrt{\frac{k}{m}} \approx 0.027 \text{ eV (Si), } 0.041 \text{ eV (C)} \quad \textcircled{O} \qquad 0.140 \text{ eV (H)} \quad \textcircled{O} \qquad (H) \quad (H) \quad \textcircled{O} \qquad (H) \quad \textcircled{O} \qquad (H) \quad \textcircled{O} \qquad (H) \quad \textcircled{O} \qquad (H) \quad (H) \quad \textcircled{O} \qquad (H) \quad ($

• Classical physics $\Rightarrow \vec{F}_I = M_I \frac{d^2}{dt^2} \vec{R}_I$





HELLMANN-FEYNMAN THEOREM Definition of force: $\vec{F}_I = -\frac{d}{d\vec{R}_I}E_0(\{\vec{R}_I\})$ • For us: $E_0(\vec{R}_I) = \min_{\psi_{n\vec{k}}} E_0(\vec{R}_I, \psi_{n\vec{k}})$ • Trick: Define $\psi_{n\vec{k}}^{(0)}(\vec{R}_I) = \arg\min_{\psi_{\vec{x}}} E_0(\vec{R}_I, \psi_{n\vec{k}})$ $\Rightarrow E_0(\vec{R}_I) \equiv E_0(\vec{R}_I, \psi_{n\vec{k}}^{(0)}(\vec{R}_I))$ • Then, $\vec{\mathrm{F}}_{I} = -\frac{d}{d\vec{R}_{I}}E_{0}(\vec{R}_{I},\psi_{n\vec{k}}^{(0)}(\vec{R}_{I}))$ $= -\frac{\partial}{\partial \vec{R}_{I}} E_{0}(\vec{R}_{I}, \psi_{n\vec{k}}^{(0)}(\vec{R}_{I})) - \sum_{n\vec{k}} \sum_{l=1}^{n} E_{0}(\vec{R}_{I}, \psi_{n\vec{k}}^{(0)}(\vec{R}_{I})) - \frac{d}{d\vec{R}_{I}} \psi_{n\vec{k}}^{(0)}(\vec{R}_{I})$ • But $\frac{\partial}{\partial \psi_{n\vec{k}}} E_0(\vec{R}_I, \psi_{n\vec{k}}^{(0)}(\vec{R}_I)) = 0$ (minimum!), so $\vec{F}_I = -\frac{\partial}{\partial \vec{R}_I} E_0(\vec{R}_I, \psi_{n\vec{k}}^{(0)}(\vec{R}_I))$ • Fixed- $\psi_{n\vec{k}}$ derivative $\frac{\partial E_0}{\partial \vec{R}_I} = \frac{\partial}{\partial \vec{R}_I} (T_e + V_{ee} + V_{NN} + V_{eN}) = \frac{\partial V_{NN}}{\partial \vec{R}_I} + \frac{\partial V_{eN}}{\partial \vec{R}_I}$ are "easy" only issue: need to know $\psi_{n\vec{k}}^{(0)}$ from E_0 calculation ! (🜚)

THIS LECTURE

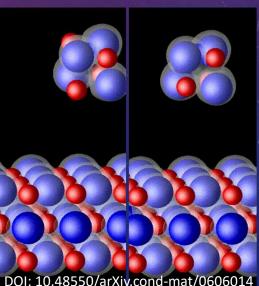
- Atomic motion and *ab initio* computation of forces
- Ab initio molecular dynamics (AIMD)
- Equilibrium structures and phases

AB INITIO MOLECULAR DYNAMICS (AIMD) $\vec{F}_I = M_I \frac{d^2 \vec{R}_I}{dt^2}$

• Verlet algorithm (time reversible, conserves energy) $\vec{F}_{I}\left(\vec{R}_{I}(t_{n})\right) = M_{I} \frac{\frac{\vec{R}_{I}(t_{n+1}) - \vec{R}_{I}(t_{n})}{\Delta t} - \frac{\vec{R}_{I}(t_{n}) - \vec{R}_{I}(t_{n-1})}{\Delta t}}{\Delta t} = M_{I} \frac{\vec{R}_{I}(t_{n+1}) - 2\vec{R}_{I}(t_{n}) + \vec{R}_{I}(t_{n-1})}{\Delta t^{2}}$ \Rightarrow

$$\mathcal{O}\vec{R}_{I}(t_{n+1}) = 2\vec{R}_{I}(t_{n}) - \vec{R}_{I}(t_{n-1}) + \frac{\Delta t^{2}}{M_{I}}\vec{F}_{I}(\vec{R}_{I}(t_{n}))$$

Study of impact of cluster temperatures on PLD of MgO
⇒ "Hot" incoming MgO PLD clusters have higher sticking coefficient that "cold" clusters (*Freedman and Arias*)



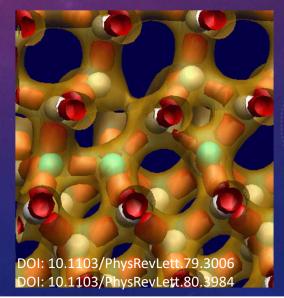
THIS LECTURE

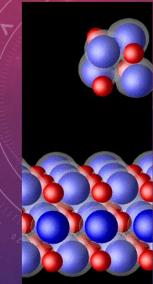
- Atomic motion and *ab initio* computation of forces
- Ab initio molecular dynamics (AIMD)
- Equilibrium structures and phases

EQUILIBRIUM STRUCTURES

- Over time, \vec{R}_I 's settle into lowest energy configuration (simulated annealing)
- Short cut: $\bigcup \vec{R}_I \leftarrow \vec{R}_I + \epsilon \vec{F}_I(\vec{R}_I)$ (gradient descent: $\vec{F}_I = -\nabla_{\vec{R}_I} E_0$)
- Led to discovery of paramagnetically active, 5-fold coordinated Si atom in core of 30° partial dislocation (*Engeness, Csanyi, Arias*)

Always verify your iterative convergence! (②)





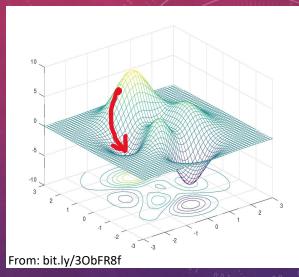
MULTIPLE MINIMA PROBLEM

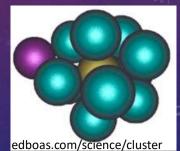
 Gradient descent finds "nearest" local minimum (e⁻ minimization is convex*, has only 1 minimum (20) !)
*Except magnetic systems (multiple magnetic orderings)

- Global minimum problem is unsolved
 - Subject of ML approaches
 - Simulated annealing
 - Chemical intuition

All approaches descend from set of reasonable starting locations

Nature often exhibits multiple structure/phases

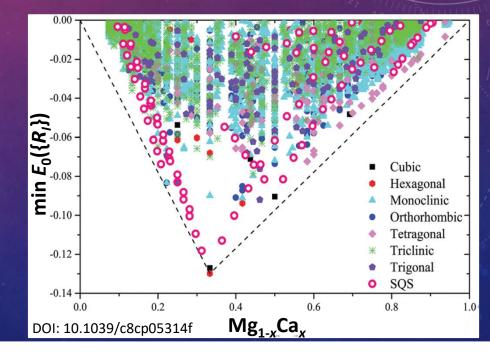




DETERMINATION OF STABLE PHASES

Thermodynamic construction

- Compute min E₀(R₁) for "exhaustive" list of minima
- Construct convex hull diagram
- Stable, realizable phases occur at vertices



THANK YOU!

TAA2@CORNELL.EDU