FROM WANNIER FUNCTIONS TO
OPTICAL ABSORPTION

The changing of bodies into light, and light into bodies, is very
conformable to the course of Nature, which seems delighted with
transmutations.

-Isaac Newton



THIS LECTURE

* Properties of and uses for Wannier functions

e Optical absorption
o Connecting measurements to quantum processes
o An example: Photoemission from PbTe



FROM LAST TIME ...
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Now, do separately for all n, 7 to restore full dependencies:
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PROPERTIES OF WANNIER FUNCTIONS W, (¥)
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e Fourier analysis: if i (7) is a smooth function of k,
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MAXIMALLY LOCALIZED WANNIER FUNCTIONS (MLWES)
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e Include adjustable compensatory phases i_» (1) < e Puk Y (1)

and optimize to “maximally localize” W,,(7): rgin(Wn‘rz‘Wn>
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* Sometimes benefit by combining multiple bands, all handled by code
* Sometimes need to play with initial “guess” for minimization



WANNIER-FUNCTION ACCELERATED BAND-STRUCTURES

e Once localized, W,, (%) enable extremely rapid calculations from very sparse matrix:
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FROM MACROSCOPIC PROPERTIES TO
MICROSCOPIC PROCESSES:
OPTICAL ABSORPTION AS AN EXAMPLE




FROM OPTICAL CONSTANTS TO PHOTON ABSORPTION

Relate optical constants to energy flow in the material
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FROM OPTICAL CONSTANTS TO PHOTON ABSORPTION
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FROM OPTICAL CONSTANTS TO PHOTON ABSORPTION

standard quantum rate

o\ = adsorbed photons/time 2 perturbationiff _ _1.5
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DISTRIBUTION OF PHOTOEMITTED ELECTRONS

W previous prediction

e experiment
== = direct only
mmmm total

Nangoi, ... , Arias, ..., PRB (201)
DOI: 10.1103/PhysRevB.104.115132 Photon Energy (eV)
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FROM IMAGINARY PART TO ALL CONSTANTS
® Kramers-Kronig relation
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