

The changing of bodies into light, and light into bodies, is very conformable to the course of Nature, which seems delighted with transmutations.
-Isaac Newton

THIS LECTURE

- Properties of and uses for Wannier functions
- Optical absorption
- Connecting measurements to quantum processes
- An example: Photoemission from PbTe

FROM LAST TIME ...

$\psi_{n \vec{k}}(\vec{r}+\vec{R})=e^{i \vec{k} \cdot \vec{R}} \psi_{n \vec{k}}(\vec{r})$ has the same $\overrightarrow{\mathrm{k}}$ periodicity as the $e^{i \vec{k} \cdot \vec{R}}, S$
\Rightarrow Expand $\psi_{n \vec{k}}(\vec{r})$ in a Fourier series in \vec{k} holding n, \vec{r} (temporarily) fixed:

$$
\begin{aligned}
& \psi_{\cdot \vec{k}}(\cdot)=\sum_{\vec{R}} W_{\cdot \vec{R}}(\cdot) e^{i \vec{k} \cdot \vec{R}} \\
& W_{\cdot \vec{R}}(\cdot)=\frac{1}{\Omega_{B Z}} \int_{B Z} d^{3} k e^{-i \vec{k} \cdot \vec{R}} \psi_{\cdot \vec{k}}(\cdot) ; \Omega_{B Z}=\int_{B Z} d^{3} k
\end{aligned}
$$

Now, do separately for all n, \vec{r} to restore full dependencies:
 $\psi_{n \vec{k}}(\vec{r})=\sum_{\vec{R}} W_{n \vec{R}}(\vec{r}) e^{i \vec{k} \cdot \vec{R}} ; \Rightarrow W_{n \vec{R}}(\vec{r})^{\prime} s$ are a basis for the $\psi_{n \vec{k}}(\vec{r})$'s! $W_{n \vec{R}}(\vec{r})=\frac{1}{\Omega_{B Z}} \int_{B Z} d^{3} k e^{-i \vec{k} \cdot \vec{R}} \psi_{n \vec{k}}(\vec{r})$; Defines the $W_{n \vec{R}}(\vec{r})^{\prime} \mathrm{s}$

PROPERTIES OF WANNIER FUNCTIONS $W_{n}(\vec{r})$

$$
W_{n \vec{R}}(\vec{r})=\frac{1}{\Omega_{B Z}} \int d^{3} k e^{-i \vec{k} \cdot \vec{R}} \underbrace{}_{n \vec{k}}(\vec{r})
$$

- Using Bloch's theorem

$$
\begin{aligned}
W_{n \vec{R}}(\vec{r}) & =\frac{1}{\Omega_{B Z}} \int d^{3} k e^{-i \vec{k} \cdot \vec{R}} e^{i \vec{k} \cdot \vec{r}} u_{n \vec{k}}(\vec{r}) \\
& \equiv W_{n}(\vec{r}-\vec{R})
\end{aligned}
$$

- Fourier analysis: if $\psi_{n \vec{k}}(\vec{r})$ is a smooth function of \vec{k}, $W_{n \vec{R}}(\vec{r})=W_{n}(\vec{r}-\vec{R})$ decays rapidly with \vec{R}
$\Rightarrow W_{n}(\vec{r})$ is well localized

MAXIMALLY LOCALIZED WANNIER FUNCTIONS (MLWFS)

$$
W_{n \vec{R}}(\vec{r})=\frac{1}{\Omega_{B Z}} \int d^{3} k e^{-i \vec{k} \cdot \vec{R}} \psi_{n \vec{k}}(\vec{r})
$$

- $\psi_{n \vec{k}}(\vec{r})$ enters only as $\left|\psi_{n \vec{k}}(\vec{r})\right|^{2}$ and $\psi_{n \vec{k}}^{*}(\vec{r}) \nabla^{2} \psi_{n \vec{k}}(\vec{r})$

\Rightarrow phase is undetermined and varies randomly (not smoothly)
- Include adjustable compensatory phases $\psi_{n \vec{k}}(\vec{r}) \leftarrow e^{-i \phi_{n \vec{k}}} \psi_{n \vec{k}}(\vec{r})$ and optimize to "maximally localize" $W_{n}(\vec{r}): \min _{\phi_{n \vec{k}}}\left\langle W_{n}\right| r^{2}\left|W_{n}\right\rangle$
* Sometimes benefit by combining multiple bands, all handled by code * Sometimes need to play with initial "guess" for minimization

WANNIER-FUNCTION ACCELERATED BAND-STRUCTURES

- Once localized, $W_{n}(\vec{r})$ enable extremely rapid calculations from very sparse matrix:

$$
\epsilon_{n \vec{k}}=\operatorname{eig}\left\langle W_{n_{1} \vec{R}_{1}}(\vec{r})\right|-\frac{1}{2} \nabla^{2}+V_{s c}(\vec{r})\left|W_{n_{2} \vec{R}_{2}}(\vec{r})\right\rangle
$$

- Dense sampling of k -space ($10^{9} \mathrm{k}$-points (\%) !):

Depends only on $\vec{R}_{2}-\vec{R}_{1}$ -0000000 - a000000 01001010001010010 \begin{tabular}{llllllll}
0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline

0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0

\hline \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0
\end{tabular} 000000000 0.0000

FROM MACROSCOPIC PROPERTIES TO MICROSCOPIC PROCESSES:
OPTICAL ABSORPTION AS AN EXAMPLE

FROM OPTICAL CONSTANTS TO PHOTON ABSORPTION

Relate optical constants to energy flow in the material

- $\epsilon=n^{2}=\left(n^{\prime}+i n^{\prime \prime}\right)^{2} \Rightarrow \epsilon^{\prime}=n^{\prime 2}-n^{\prime \prime 2}, \epsilon^{\prime \prime}=2 n^{\prime} n^{\prime \prime}$
- $\vec{E}(z)=\vec{E}_{0} e^{i k z}=\vec{E}_{0} e^{i\left(\omega / c_{\text {material }} z\right.}=\vec{E}_{0} e^{i n(\omega / \mathrm{c}) \mathrm{z}}$

$$
=\vec{E}_{0} e^{i n k_{0} z}=\vec{E}_{0} e^{i n^{\prime} k_{0} z} e^{-\bar{n}^{\prime \prime} k_{0} z}
$$

- power/area $\mathrm{p}=\frac{k}{\mu_{0} \omega}|\vec{E}|^{2}=\frac{1}{2} \frac{n^{\prime} k_{0}}{\mu_{0} \omega} E_{0}^{2} e^{-2 n^{\prime \prime} k_{0} z}$

($1 / 2$ for time average)
- energy loss/volume $\frac{d u}{d t}=\hbar \omega w, \quad w \equiv \frac{\text { adsorbed photons/time }}{\text { volume }}$

FROM OPTICAL CONSTANTS TO PHOTON ABSORPTION

$$
\begin{aligned}
& P_{\text {in }}-P_{o u t}=\frac{d U}{d t} \\
& p(z) A-p(z+\Delta z) A=\frac{d u}{d t}(\mathbb{A} \Delta z) \\
& \text { - } \frac{d u}{d t}=-\frac{p(z+\Delta z)-p(z)}{\Delta z}=-\frac{d p}{d z} \leftarrow \text { (continuity eq.) } \\
& \text { - } \epsilon^{\prime \prime}=2 n^{\prime} n^{\prime \prime} \\
& \text { - } \mathrm{p}=\underbrace{\frac{d u}{n^{\prime} k_{0}} E_{0}^{2} \mu_{0} \omega e^{-\underbrace{2 n^{\prime \prime} k_{0}} z}} \quad \mathrm{P}_{\mathrm{in}}=p(\mathrm{z}) A \\
& \text { - } \frac{d u}{d t}=\hbar \omega w \\
& =-\frac{d p}{d z}=\overbrace{2 n^{\prime \prime} k_{0}} \cdot \overbrace{\frac{n^{\prime} k_{0}}{2 \mu_{0} \omega} \mathrm{E}^{2}}=2 n^{\prime} n^{\prime \prime} \frac{k_{0}^{2} E^{2}}{2 \mu_{0} \omega} \\
& \Rightarrow \epsilon^{\prime \prime}=2 n^{\prime} n^{\prime \prime}=\frac{2 \hbar \mu_{0} \omega^{2}}{k_{0}^{2}} \frac{w}{E^{2}}=\frac{2 \hbar}{\epsilon_{0}} \frac{w}{E^{2}}(\text { ©) ! })\left(\frac{\mu_{0} \omega^{2}}{k^{2}}=\mu_{0} c^{2}=\frac{1}{\epsilon_{0}}\right) \quad \frac{d U}{d t}=\frac{d u}{d t} A \Delta z
\end{aligned}
$$

FROM OPTICAL CONSTANTS TO PHOTON ABSORPTION

standard quantum rate
$w \equiv \frac{\text { adsorbed photons/time }}{\text { volume }}$

$$
=\frac{1}{V} \underbrace{\sum_{f i}}_{\text {all }} \delta \underbrace{\delta\left(\epsilon_{f}-\epsilon_{i}-\hbar \omega\right)}_{\text {that }} \underbrace{\left\{\left(1-f_{f}\right) f_{i}-\left(1-f_{i}\right) f_{f}\right\}}_{\text {forward and reverse }}\} \frac{2 \pi}{\hbar} \left\lvert\,\langle f| \frac{e}{m} \vec{A} \cdot \vec{p}|i|^{\text {volume }}\right.
$$

transitions

$\underbrace{N_{\vec{k}}\langle\ldots\rangle_{\vec{k}}=N_{\text {cell }}(\ldots)_{\vec{k}}}_{1}$ energy

$\left.=\frac{1}{V} \sum_{\vec{k}} \sum_{n} \sum_{m} \delta\left(\epsilon_{m \vec{k}}-\epsilon_{n \vec{k}}-\hbar \omega\right)\left\{f_{n \vec{k}}-f_{m \vec{k}}\right\} \frac{2 \pi e^{2}}{\hbar m^{2}} \frac{A^{2}}{4} \frac{1}{3}|\langle f| \vec{p}| i\right\rangle\left.\right|^{2}$
$\left.=\frac{\pi e^{2} E^{2}}{6 \hbar m^{2} \omega^{2}} \frac{1}{V_{\text {cell }}} \int \frac{d^{3} k}{\Omega_{B Z}} 2 \sum_{n m} \delta\left(\epsilon_{m \vec{k}}-\epsilon_{n \vec{k}}-\hbar \omega\right)\left\{f_{n \vec{k}}-f_{m \vec{k}}\right\}|\langle f| \vec{p}| i\right\rangle\left.\right|^{2}$
$\left.\Rightarrow \epsilon^{\prime \prime}=\frac{2 \hbar}{\epsilon_{0}} \frac{w}{E^{2}}=\frac{\pi e^{2}}{3 \epsilon_{0} m^{2} \omega^{2}} \frac{1}{V_{\text {cell }}} \int \frac{2 d^{3} k}{\Omega_{B Z}} \sum_{n m} \delta\left(\epsilon_{m \vec{k}}-\epsilon_{n \vec{k}}-\hbar \omega\right)\left\{f_{n \vec{k}}-f_{m \vec{k}}\right\}|\langle f| \vec{p}| i\right\rangle\left.\right|^{2}$ processes must go from filled $1 / 3$ for orientation average to empty state
$1 / 4$ for time and space averages

Г X W L Г K

DISTRIBUTION OF PHOTOEMITTED ELECTRONS

Nangoi, ... , Arias, ..., PRB (201) DOI: 10.1103/PhysRevB.104.115132

\leftarrow Survey!!! ©

THANK YOU!
TAA2@CORNELL.EDU

--- LAST SLIDE --(BACKUPS BELOW)

FROM IMAGINARY PART TO ALL CONSTANTS

- Kramers-Kronig relation

$$
\epsilon^{\prime}(\omega)=\frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\epsilon \prime \prime\left(\omega^{\prime}\right)}{\omega^{\prime}-\omega} d \omega^{\prime}
$$

- Index of refraction $\left(n^{\prime}+i n^{\prime \prime}\right)=\sqrt{\epsilon^{\prime}+i \epsilon^{\prime \prime}}$

