

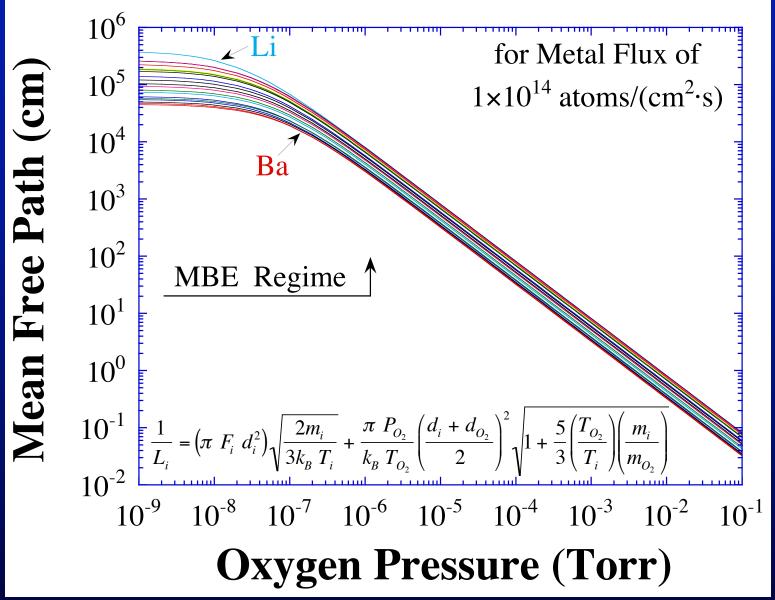
Lecture #2— Nuts and Bolts of Oxide MBE: Growth Conditions, Sources, and Crucibles

Darrell G. Schlom

Nuts and Bolts of Oxide MBE

How to grow your favorite oxide by MBE?

- Lecture #2—*Growth Conditions, Sources, and Crucibles*
- Lecture #3—Composition Control and Calibration
- Lecture #4—Epitaxy, Substrates, and Crystal Growth

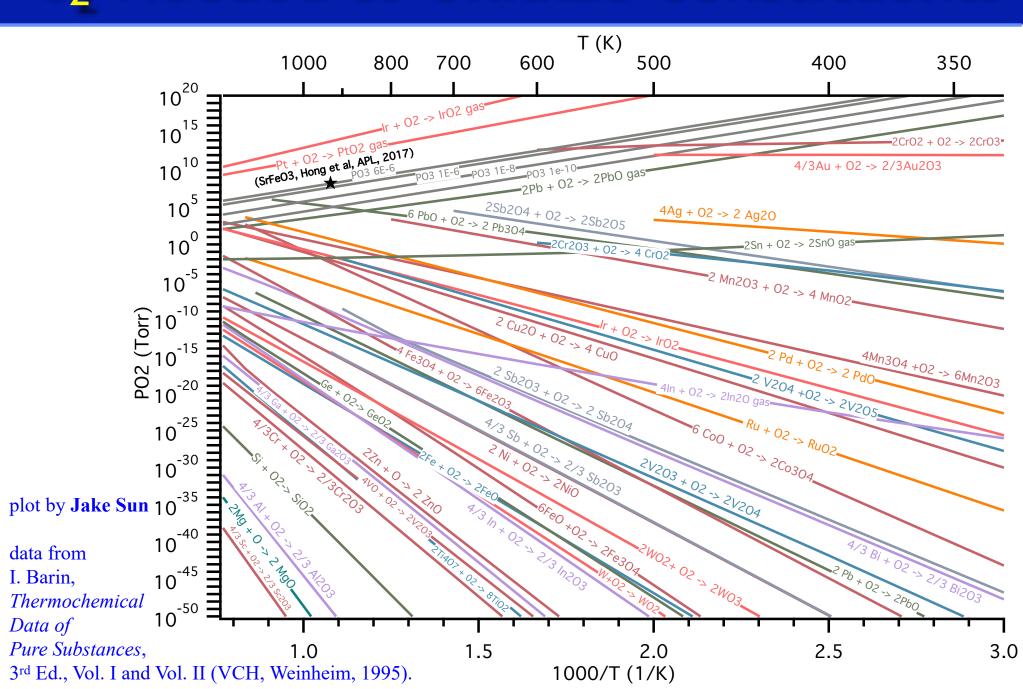

Nuts and Bolts of Oxide MBE

- Mean Free Path (maximum P_{0_2})
- Minimum P_{O_2} , need for P_{O_3}
- Optimal T_{sub}
- MBE System
- MBE Sources
- Crucibles

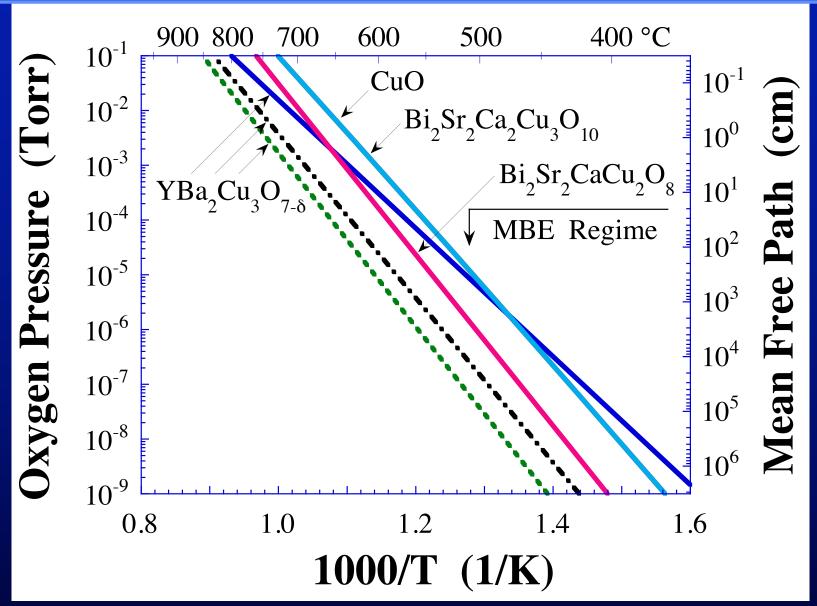


Maximum O₂ Pressure for MBE

O₂ Needed to Oxidize Constituents



data from I. Barin, '



1000/T (1/K)

O₂ Needed to Oxidize Constituents

O₂ Needed to Oxidize Cuprates

O₃ Activity by Thermodynamics

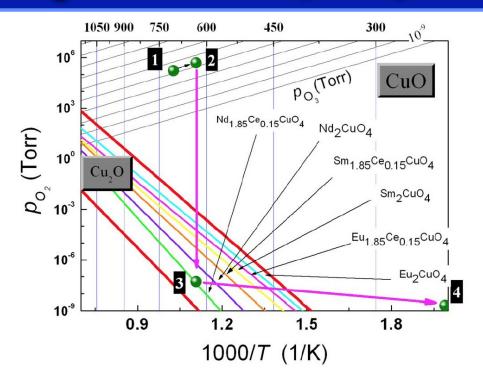
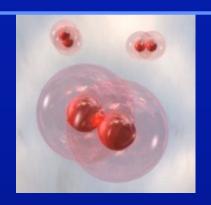
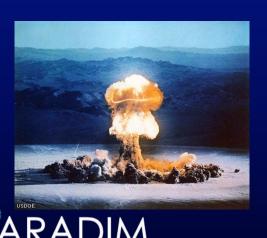


FIG. 1. (Color online) Typical thermodynamic phase stability diagram for electron-doped cuprates. Stability lines for CuO and Cu_2O have been calculated using the commercially available program MALT®. Additionally, the equilibria oxidizing potential lines for ozone and oxygen are calculated. The numbered points describe a typical growth of the thin film. The border lines for the different copper valencies are thick red colored. Between them, all experimentally established stability lines for the T'-structure compounds are lying. Points 1 and 2 represent the growth followed by annealing in vacuum (point 3) and afterwards cooled down to point 4.

$$O_2 \stackrel{\Delta G^{\circ}}{\longleftrightarrow} \frac{2}{3} O_3$$


$$P_{O_2} = P_{O_3}^{2/3} e^{\left(\frac{\Delta G^{\circ}}{R T_{sub}}\right)}$$

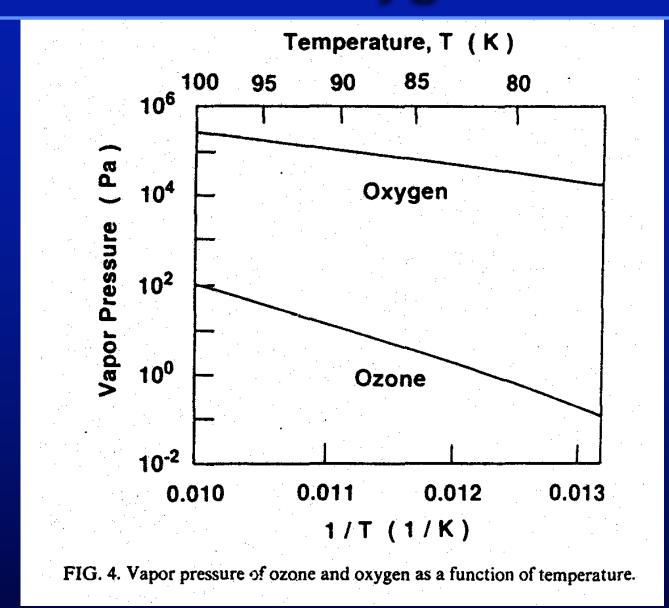
Activity of O_3 is ~ 10^{12} higher than O_2 at typical T_{sub}



Oxygen vs. Ozone

Oxygen:

- Easy to use directly from the cylinder
- Depending on material, films are oxygendeficient


Ozone from ozone generator:

- Around 15 wt% O₃ in O₂
- As O₃ easily decomposes, one O₃ is similar to one O radical
- Higher wt% not achievable, saturation of O₃ concentration

Distilled ozone:

- Can provide 80-100 wt% pure O₃
- Better film oxidation, wider process window
- But: Gas is explosive above ~10 Torr (absolute), liquid is explosive and shock-sensitive

Vapor Pressure Oxygen vs. Ozone

Ozone Safety Concerns

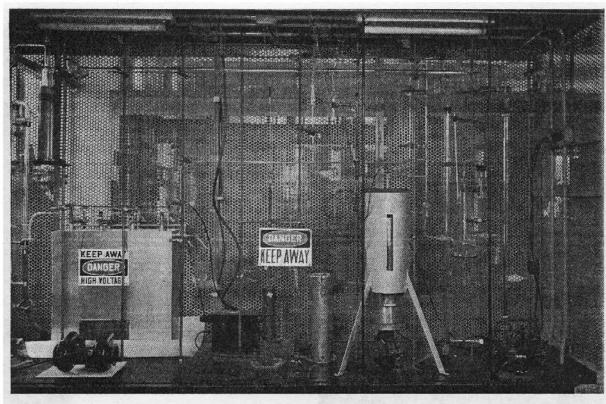


Figure 4. Ozone system

A.C. Jenkins

"Laboratory Techniques for Handling High-Concentration Liquid Ozone," in:

Ozone Chemistry and Technology

Vol. 21 of Advances in Chemistry Series

(American Chemical Society, Washington, D.C., 1959) pp. 13-21.

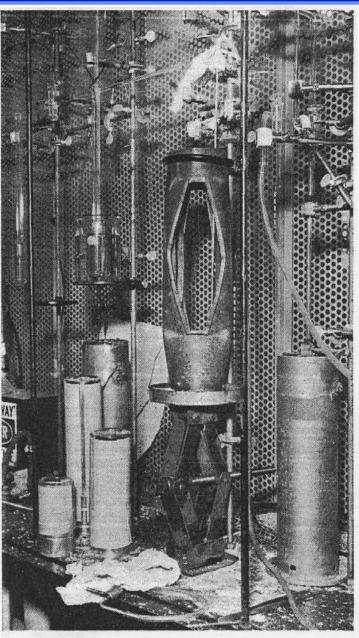


Figure 5. Apparatus after explosion

Ozone in Silica Gel (Union Carbide)

Separation of Ozone from Oxygen by a Sorption Process

G. A. COOK, A. D. KIFFER, C. V. KLUMPP, A. H. MALIK, and L. A. SPENCE

Research and Development Laboratory, Linde Co., A Division of Union Carbide Corp., Tonawanda, N. Y.

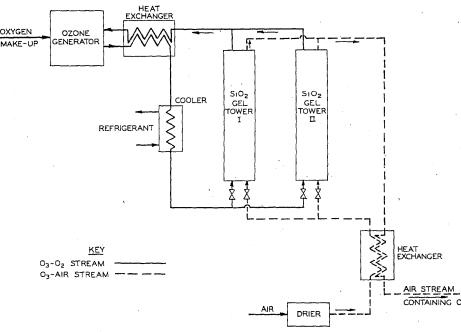
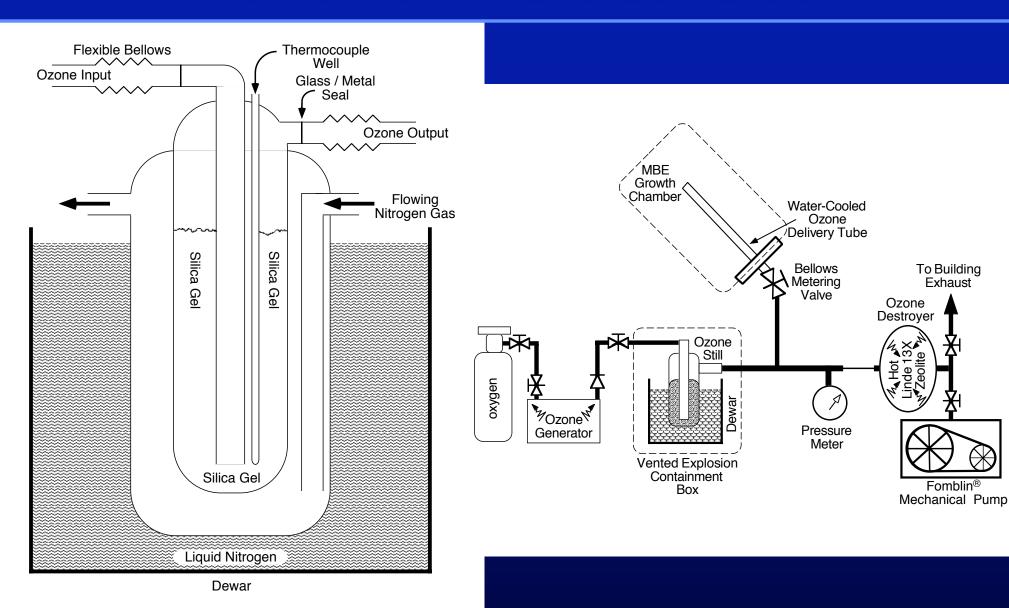


Figure 7. Simplified flow diagram for two-stage transfer process

Ozone is separated from oxygen by adsorption on refrigerated silica gel, followed by desorption, either in pure form at reduced pressure, or diluted by air, nitrogen, argon, or other gas not strongly adsorbed on silica gel. This is a practical method, free from hazard when correctly performed.

G.A. Cook, A.D. Kiffer, , C.V. Klumpp, A.H. Malik, and L.A. Spence,

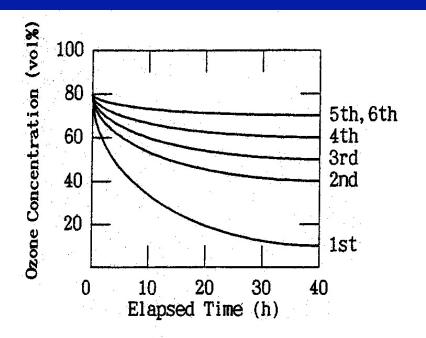

"Separation of Ozone from Oxygen by a Sorption Process," in:

**Ozone Chemistry and Technology,*

Vol. 21 of Advances in Chemistry Series, (American Chemical Society, Washington, D.C., 1959) pp. 44-52.

Ozone in Silica Gel

Process Control



Control Character Characte

- Safety committee requirements led to development of fully integrated process controller
- Controller monitors all process equipment and parameters
 - Countermeasures if close to critical limit
- Self-test of equipment before process start
 - Fully automated operation
 - No need to manually watch ozone process, user can focus on MBE growth!!!

Ozone System Passivation

100

80 60 60 0 20 40 60 80 100 Ozone Concentration (%)

760Torr

Temperature: 20°C

Sealed Pressure

Fig. 2. Ozone concentration decay during ozone passivation.

Fig. 4. Relationship of ozone concentration with thickness of passivated film formed at atmospheric pressure and 20°C.

Pros and Cons of Ozone

Pros

- Excellent Oxidant (>10³ (experiment) to <10¹² (thermo) more powerful than O₂)
- 80% Ozone (+20% O₂) delivered to the Substrate
- No Energetic Species (thermal ozone beam)
- Clean (lower in contaminants than plasma beam)

Cons

- Safety (Ozone still issues)
- Safety (Pump issues)
- Need Ozone-Compatible UHV Leak Valve
- Need to Passivate Ozone System

If you want to grow EuO by MBE, what oxidant should you use?

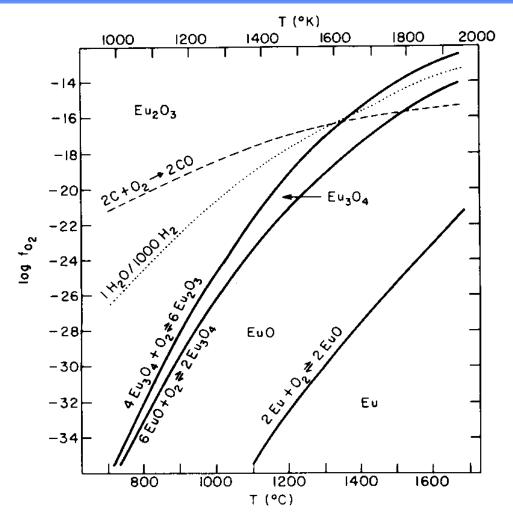


Fig. 1. Plot of $f_{O_2}(T)$ for oxidation reactions of Eu, EuO, and Eu₃O₄ and for C to CO and H₂ with 1 part/1000 H₂O.

Iournal of the American 'Oxygen-Fugacity

Nuts and Bolts of Oxide MBE

- Mean Free Path (maximum P_{O_2})
- Minimum P_{O_2} , need for P_{O_3}
- Optimal T_{sub}
- MBE System
- MBE Sources
- Crucibles

Surface vs. Bulk Diffusion

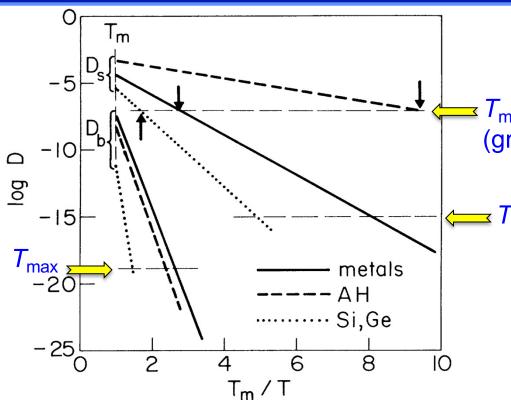


FIG. 6. Diagram showing deduced global dependences of surface and bulk diffusion coefficients, D_s and D_b , on T_m/T for metals (solid lines), elemental semiconductors (dotted lines), and salts (dashed lines). The construction is described in the text. Smooth flat interfaces generally require $D_s \gtrsim 10^{-8}-10^{-7}$ cm²/sec, which fixes the lowest growth temperatures (arrows) as $\sim 3T_m/8$, $0.55T_m$, and $0.1T_m$ in the three cases. RHEED oscillations are expected for $D_s \gtrsim 10^{-15}$ cm²/sec and bulk interdiffusion for $D_b \gtrsim 10^{-19}$ cm²/sec.

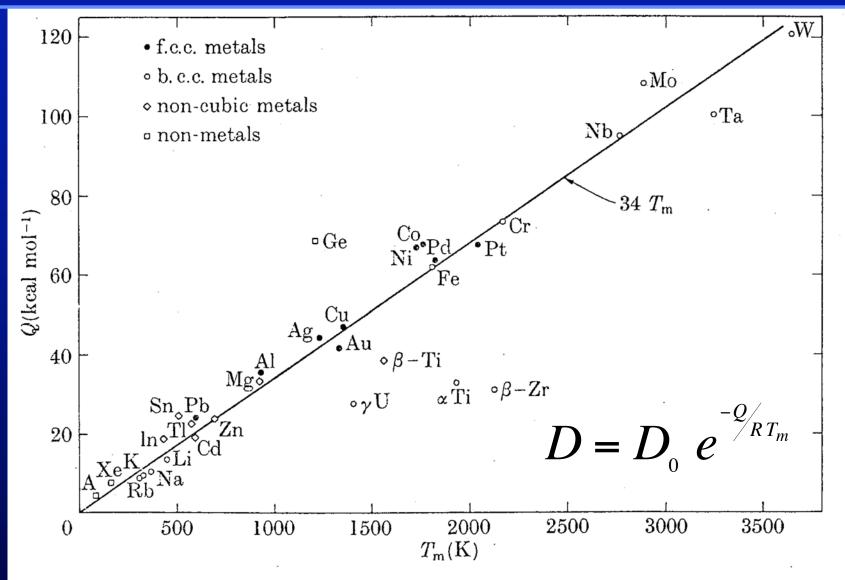
Assuming growth rate of 0.1 monolayer/sec

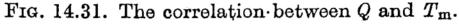
 T_{\min} for smooth epitaxial films (growth by step propagation)

 T_{\min} for epitaxy

Optimal Growth Temperatures

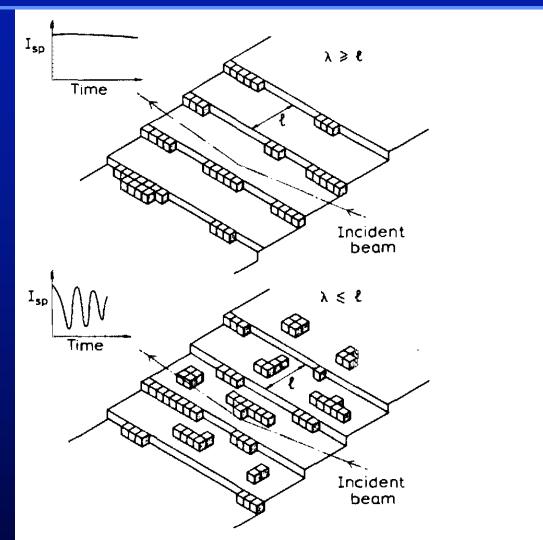
$$0.55 < \frac{T_{sub}}{T_{melt}} < 0.7$$
 for semiconductors


$$0.35 < \frac{T_{sub}}{T_{melt}} < 0.4$$
 for metals


$$0.1 < \frac{T_{sub}}{T_{melt}} < 0.4$$
 for simple ceramics

M.H. Yang and C.P. Flynn *Physical Review Letters* **62** (1989) 2476-2479.

Universal Diffusion Behavior of Metals



Determining Surface Diffusion from RHEED Oscillations

J.H. Neave, P.J. Dobson, B.A. Joyce, and J. Zhang, Applied Physics Letters 47 (1985) 100-102.

FIG. 1. Schematic illustration of the principle of the method, showing the change in RHEED information as the growth mode changes from "step flow" to 2-D nucleation. Steps lie along [100].

Surface vs. Bulk Diffusion

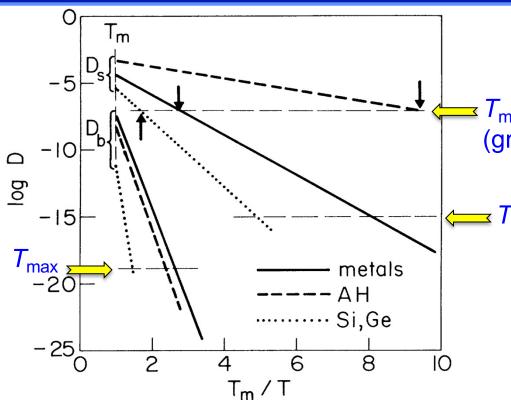


FIG. 6. Diagram showing deduced global dependences of surface and bulk diffusion coefficients, D_s and D_b , on T_m/T for metals (solid lines), elemental semiconductors (dotted lines), and salts (dashed lines). The construction is described in the text. Smooth flat interfaces generally require $D_s \gtrsim 10^{-8}-10^{-7}$ cm²/sec, which fixes the lowest growth temperatures (arrows) as $\sim 3T_m/8$, $0.55T_m$, and $0.1T_m$ in the three cases. RHEED oscillations are expected for $D_s \gtrsim 10^{-15}$ cm²/sec and bulk interdiffusion for $D_b \gtrsim 10^{-19}$ cm²/sec.

Assuming growth rate of 0.1 monolayer/sec

 T_{\min} for smooth epitaxial films (growth by step propagation)

 T_{\min} for epitaxy

Optimal Growth Temperatures

$$0.55 < \frac{T_{sub}}{T_{melt}} < 0.7$$
 for semiconductors

$$0.35 < \frac{T_{sub}}{T_{melt}} < 0.4$$
 for metals

$$0.1 < \frac{T_{sub}}{T_{melt}} < 0.4$$
 for simple ceramics

M.H. Yang and C.P. Flynn *Physical Review Letters* **62** (1989) 2476-2479.

Surface Energy Considerations

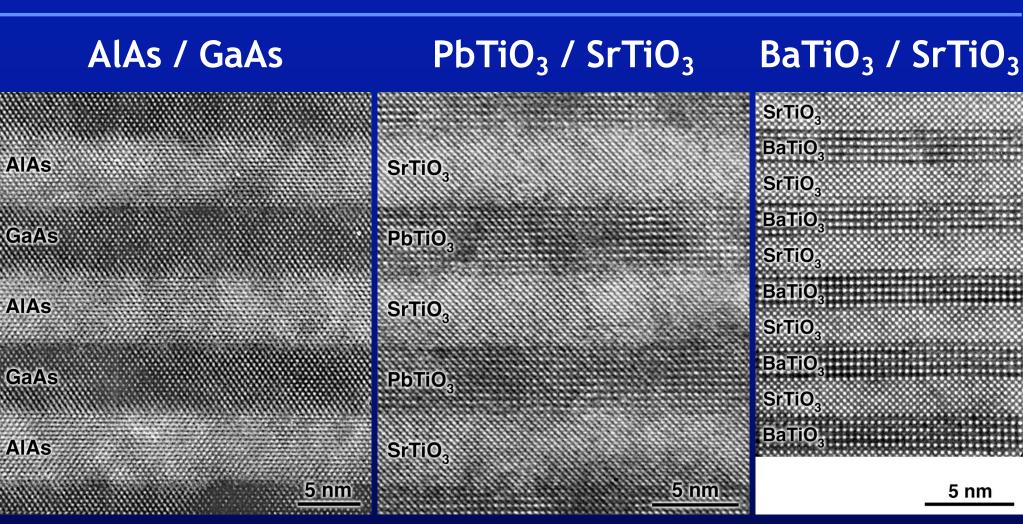



FIGURE 2.7 Surface tension of elements in the liquid phase (from Zangwill, 1988).

TEM of MBE-Grown Superlattices

A.K. Gutakovskii *et al.*, Phys. Stat. Sol. (a) **150** (1995) 127. C.D. Theis

J.H. Haeni

(1st Generation Schlom Group)

(2nd Generation)

HRTEM—Pan Group (Michigan)

D.G. Schlom *et al.*, Mater. Sci. Eng. B **87** (2001) 282.

From the observed morphology, which likely has the higher surface energy?

- (a) GaAs
- (b) AlAs
- (c) They appear to have the same surface energies

Thermodynamic Considerations

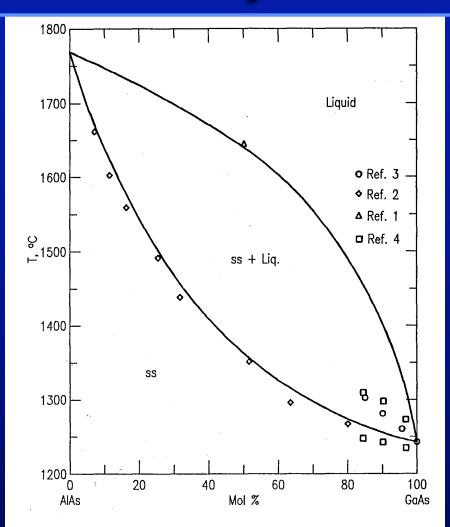


Fig. 8343—Pseudobinary system AlAs-GaAs. K. Y. Ma, S. H. Li, and G. B. Stringfellow, "P, As, and Sb Phase Diagrams", Special Report to the Standard Reference Data Program, National Institute of Standards and Technology; Gaithersburg, Maryland (1987).

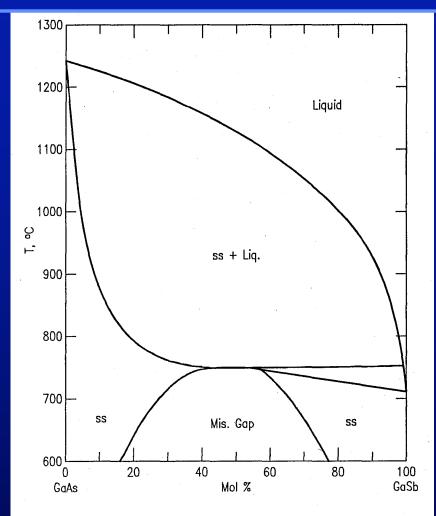
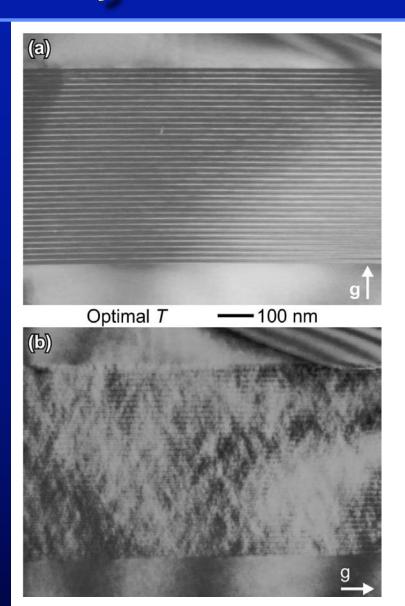


Fig. 8362—Pseudobinary system GaAs-GaSb. Calculated diagram.


K. Y. Ma, S. H. Li, and G. B. Stringfellow, "P, As, and Sb Phase Diagrams", Special Report to the Standard Reference Data Program, National Institute of Standards and Technology; Gaithersburg, Maryland (1987).

Thermodynamic Considerations

Increased
Interface
Roughness
and
Clustering at
Non-Optimal
Growth
Conditions

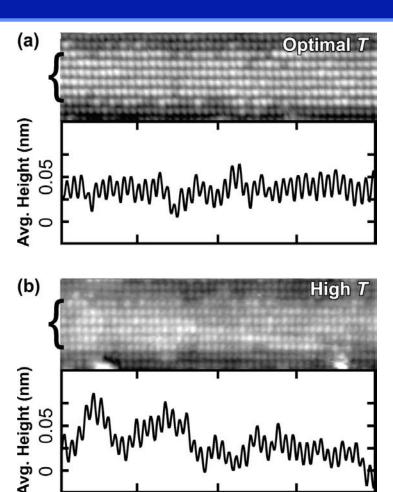
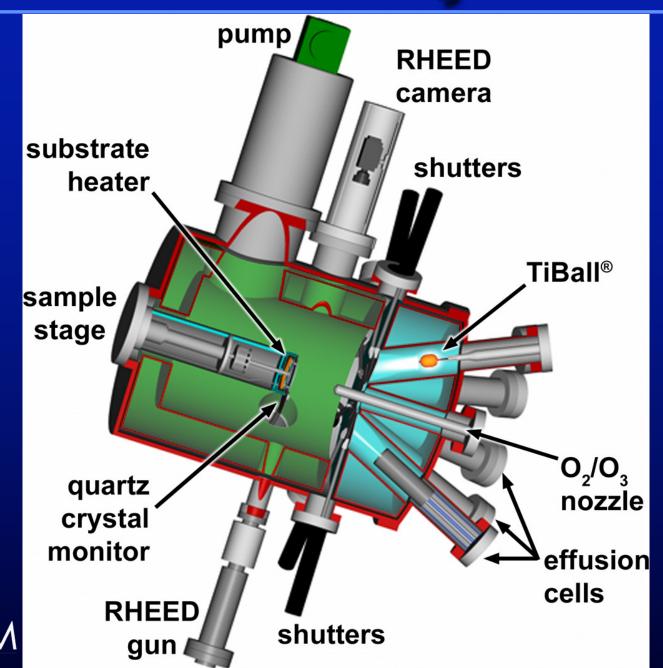
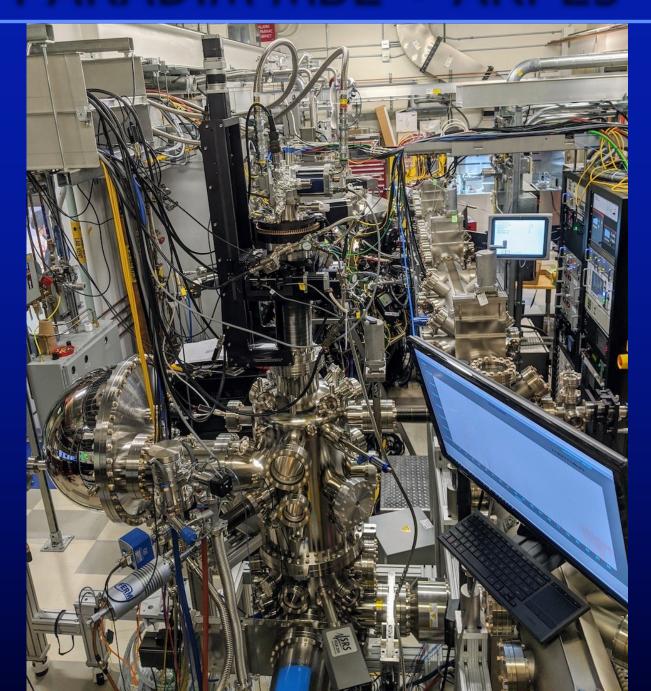


FIG. 6. XSTM images and average-height profiles for InGaSb-alloy layers in an (a) optimal- and (b) high-temperature sample. (a) -2.0 V, 50 pA and (b) -2.5 V, 0.5 nA.

Distance (nm)


Nuts and Bolts of Oxide MBE

- Mean Free Path (maximum P_{O_2})
- Minimum P_{O_2} , need for P_{O_3}
- Optimal T_{sub}
- MBE System
- MBE Sources
- Crucibles


Oxide MBE System

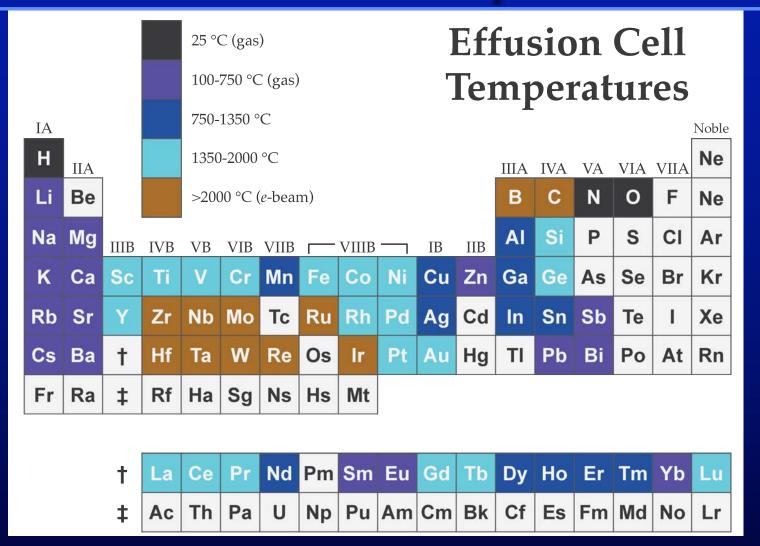

PARADIM MBE + ARPES



Oxide MBE

Automated Veeco GEN10 Oxide MBE

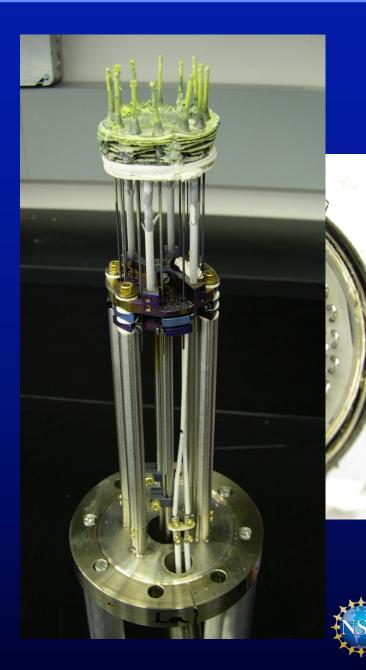
Sources for Oxide MBE


Effusion cell
 (resistively heated
 thermal evaporators, up
 to 2000 ° C), material in
 crucible

• Ti-Ball™ source titanium sphere with resistive heater inside

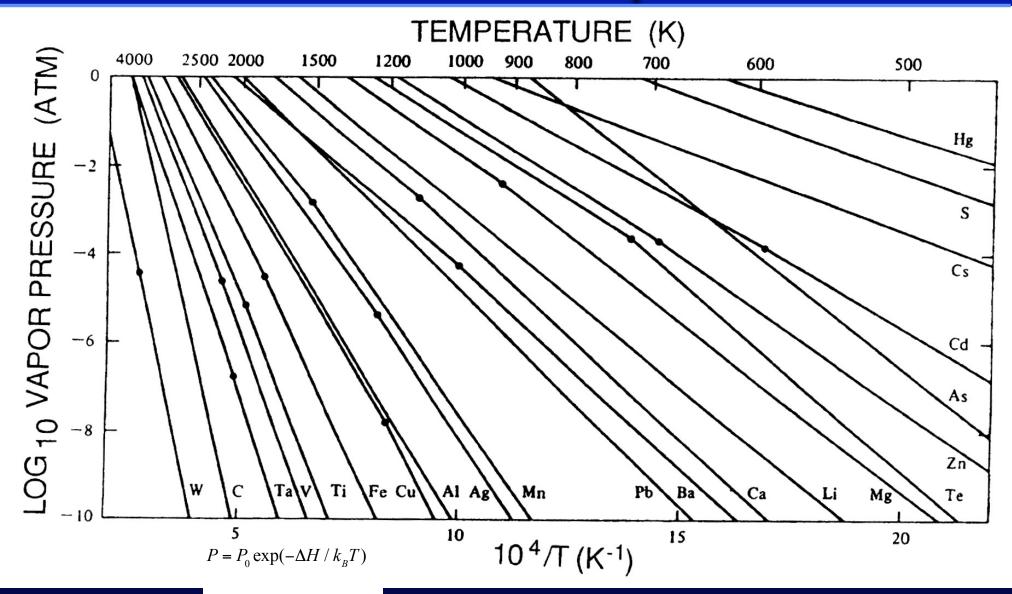
• e-gun evaporator for extremely low vapor pressure materials (W, Ru, etc.)

MBE Effusion Cells for Different Temperatures



MBE Effusion Cells

Differentially Pumped Effusion Cells

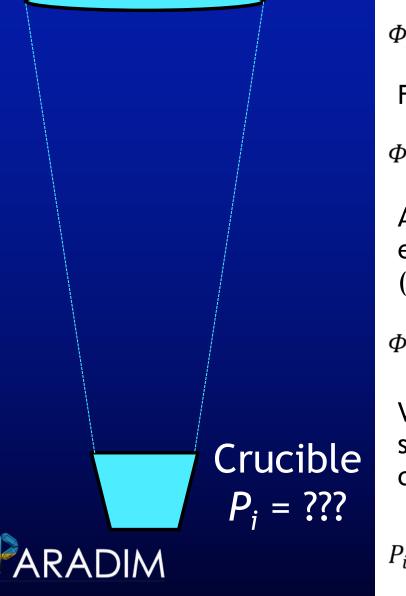


Enable stable fluxes at distilled ozone pressures up to 1x10⁻⁵ Torr Can change or refill sources without venting entire MBE

Arrhenius Plot of Vapor Pressure

 $\ln P = \ln P_0 - \left(\frac{\Delta H}{k_R}\right) \cdot \left(\frac{1}{T}\right)$

so plot log(P) vs 1/T: straight line if ΔH is constant (note small change in slope at melting point)

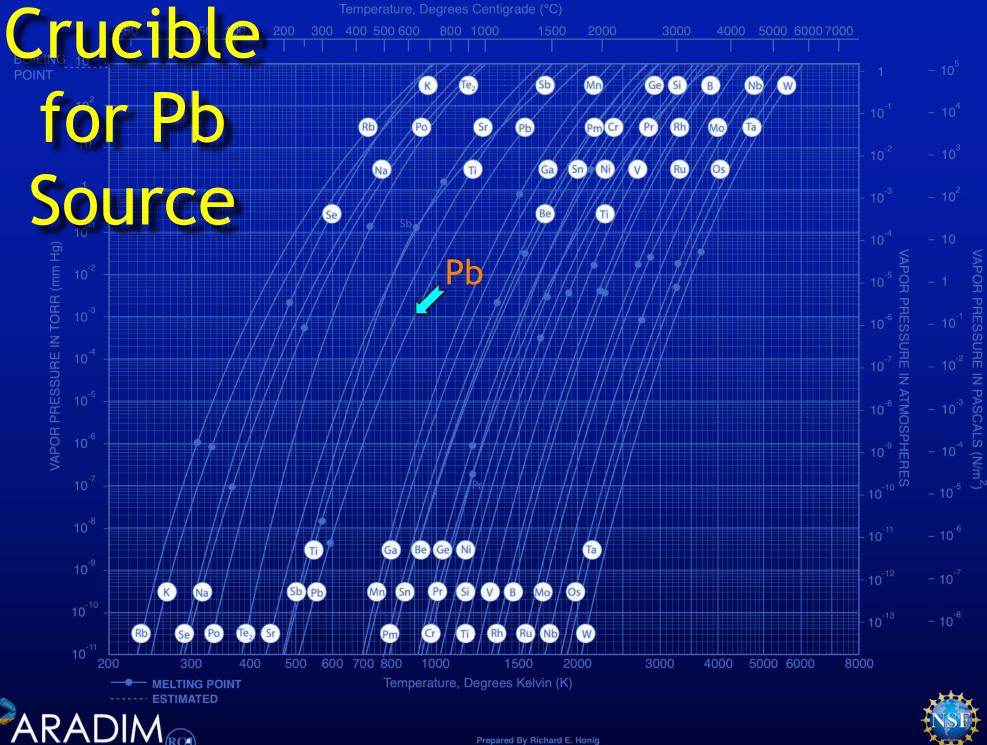

If your desired flux of Sr is 30% higher than your measured flux or Sr, how would you go about calculating how much you need to increase the temperature of the Sr effusion cell to get the desired flux?

What Vapor Pressure Needed?

Substrate (growth rate = 0.1 monolayers/s)

$$\Phi_{Sr} = (0.1) \frac{1 \text{ Sr atom}}{(3.905 \text{ Å})^2} \text{ s}^{-1} = 6.6 \times 10^{13} \frac{\text{atoms}}{\text{cm}^2 \text{ s}}$$
for SrTiO₃

From kinetic theory of gases:

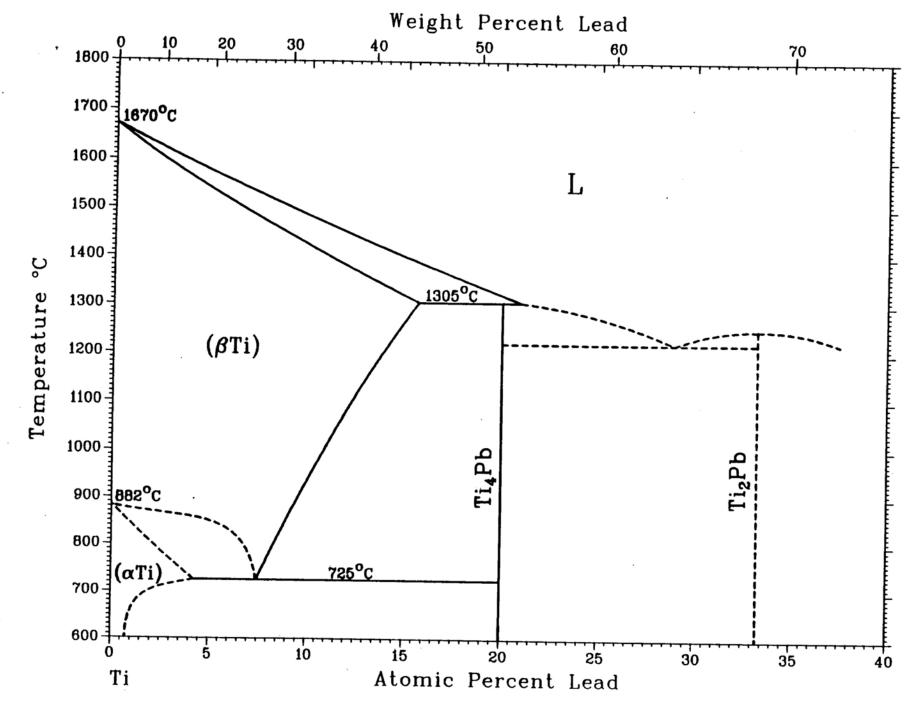

$$\Phi = \frac{P}{\sqrt{2\pi m k_B T}} \qquad \text{for Sr, } m = 87.6 \text{ amu}$$
 and $T \approx 1000 \text{ K}$

Above is maximum evaporation rate. For free evaporation (as in MBE where wide-mouth (Langmuir) sources are used)

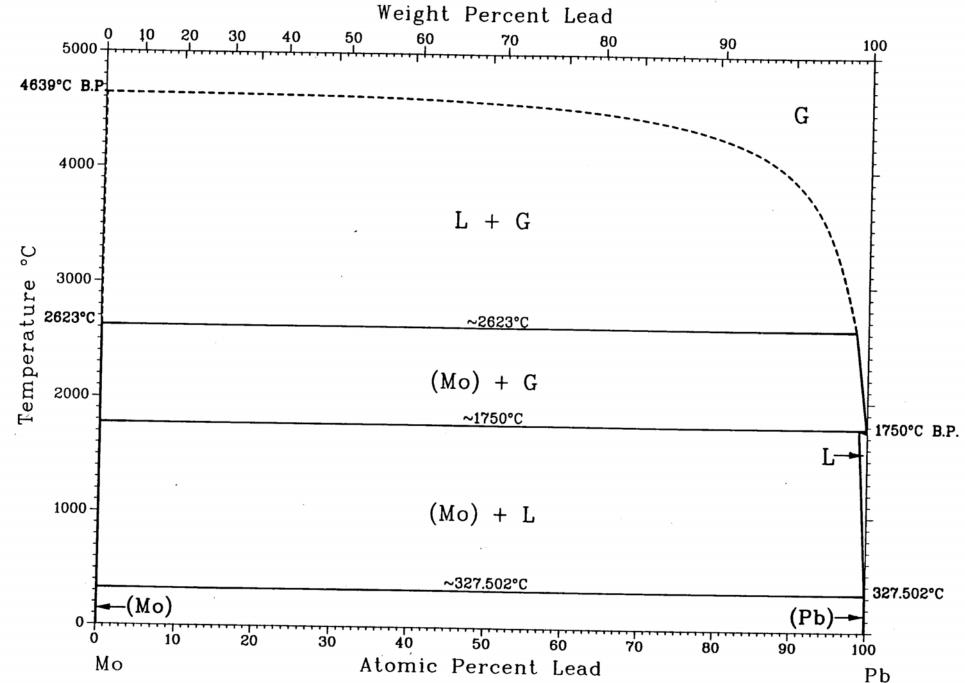
$$\Phi = \frac{\alpha P}{\sqrt{2\pi m k_B T}} \qquad \alpha \approx 0.1$$
 (coefficient of evaporation)

Vapor pressure P_i needs to be larger by ratio of surface area of substrate to surface area of crucible

$$P_i = \frac{\Phi\sqrt{2\pi m k_B T}}{\alpha} (area \ ratio) \approx 10^{-4} - 10^{-3} \ Torr$$



Binary Alloy Phase Diagrams,


edited by T.B. Massalski (ASM International, 1990).

Mo-Pb Phase Diagram

Binary Alloy Phase Diagrams,

edited by T.B. Massalski (ASM International, 1990).

Pb-W (Lead-Tungsten)

S.V. Nagender Naidu and P. Rama Rao

No phase diagram is available for the Pb-W system. The solubility of W in liquid Pb is less than 0.1 at.% W. No intermediate phases exist in the system.

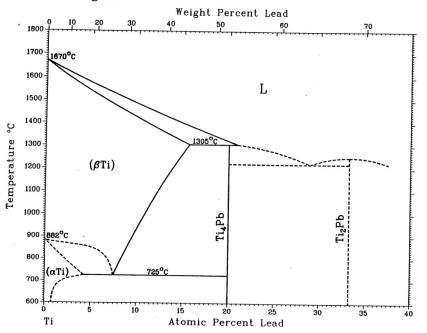
[19Ino] clained to have determined the solidification temperature of alloys containing up to 30 at.% W at 1300 °C; however, no further details are available in this regard. The findings of [19Ino] are not accepted here because there is no confirming evidence in any of the later experimental investiga-

Pb-W Crystal Structure Data

	0	n	a	Struktur-	
Phase	Composition, at.% W	Pearson symbol	Space group	bericht designation	Prototype
(Pb)	. ~0	cF4	$Fm\overline{3}m$	A1	Cu
(W)	. ~100	cI2	$Im\overline{3}m$	A2	W

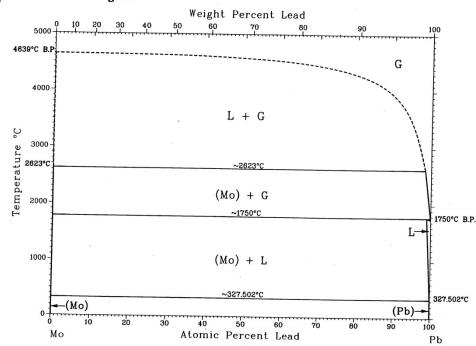
tions as to the alloy formation.

19Ino: S. Inouye, *Mem. Coll. Sci. Kyoto Univ.*, 4, 43-46 (1919) in German.


To be published in Phase Diagrams of Bi-

nary Tungsten Alloys, 1991. Complete evaluation contains 1 table and 11 references.

What Crucible to use for Pb?



Ti-Pb Phase Diagram

Mo-Pb Phase Diagram

Ti, Mo, or W?

Pb-W (Lead-Tungsten)

S.V. Nagender Naidu and P. Rama Rao

No phase diagram is available for the Pb-W system. The solubility of W in liquid Ph is less

bility of W in liquid Pb is less than 0.1 at.% W. No intermediate phases exist in the system.

[19Ino] clained to have determined the solidification temperature of alloys containing up to 30 at.% W at 1300 °C; however, no further details are available in this regard. The findings of [19Ino] are not accepted here because there is no confirming evidence in any of the later experimental investiga-

Pb-W Crystal Structure Data

Phase	Composition, at.% W	Pearson symbol	Space group	Struktur- bericht designation	Prototype
(Pb)	. ~0	cF4	$Fm\overline{3}m$	A1	Cu
(W)	. ~100	cI2	$Im\overline{3}m$	A2	W

tions as to the alloy formation.

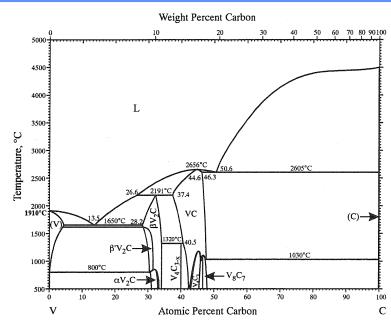

19Ino: S. Inouye, Mem. Coll. Sci. Kyoto Univ., 4, 43-46 (1919) in German.To be published in Phase Diagrams of Bi-

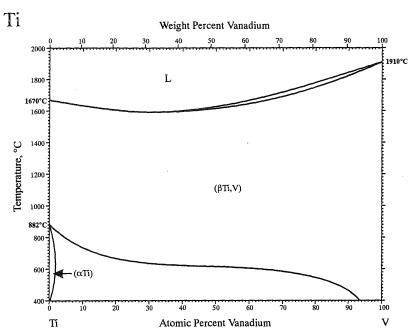
nary Tungsten Alloys, 1991. Complete evaluation contains 1 table and 11 references.

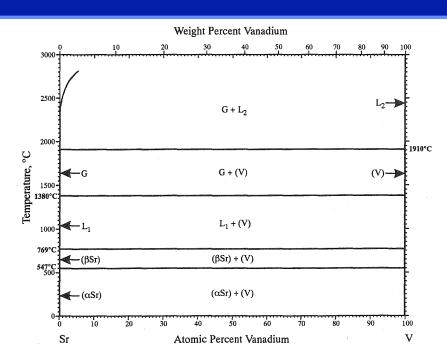
					Toma	(° C) for	Given		Evanor	ation I	Techniques			
					Vap.	Press. (1	orr)	1000		The	ermal Sour	ces		
Material	Symbol	MP (° C)	S/D	g/cm ³	10-8	10-6	10-4	E-Bean	n Boat	Coil	Basket	Crucible	Sputter	Comments
Kanthal	FeCrAl	-	-	7.1	2 -3	_		_	W	W	W	_	DC, RF	- -
Lanthanum	La	921	<u> </u>	6.15	990	1,212	1,388	Ex	W, Ta	-	· ·	Al ₂ 0 ₃	RF	Films will burn in air if scraped
Lanthanum Boride	LaB ₆	2,210	D	2.61	-	=	-	G	-	_	35 	-	RF	-
Lanthanum Bromide	LaBr ₃	783	_	5.06	-	-	_	-	-	_	Ta		RF	n=1.94. Hygroscopic
Lanthanum Fluoride	LaF ₃	1,490	S	~6.0	8	_	900	G	Ta, Mo	-	Ta	ш-ч	RF	No decomposition. n ~1.6
Lanthanum Oxide	La ₂ 0 ₃	2,307	-	6.51	-	_	1,400	G	W, Ta	_	2—·	-	RF	Loses oxygen. n~1.73
Lead	Pb	328	-	11.34	342	427	497	Ex	W, Mo	W	W, Ta	Al203, Q	DC,	RF Toxic
Lead Bromide	PbBr ₂	373	_	6.66	_	_	~300	-	_	_	_	-	_	_
Lead Chloride	PbCl ₂	501	_	5.85	_	_	~325	_	Pt	_	> 	Al ₂ 0 ₃	RF	Little decomposition
Lead Fluoride	PbF ₂	855	S	8.24	-	_	~400		W, Pt, Mo	-	3-3	Be0	RF	n = 1.75
Lead lodide	Pbl ₂	402	-	6.16	_	-	~500	-	Pt	-	3 -4 5	Q	_	 c
Lead Oxide	Pb0	886	_	9.53	_		~550	-	Pt	-	_	Q, Al ₂ 0 ₃	RF-R	No decomposition. n ~2.6
_ead Selenide	PbSe	1,065	S	8.10	_	_	~500	_	W, Mo	_	W	Gr, Al ₂ 0 ₃	RF	-
_ead Stannate	PbSn0 ₃	1,115	_	8.1	670	780	905	Р	Pt	+	Pt	Al ₂ 0 ₃	RF	Disproportionates
_ead Sulfide	PbS	1,114	S	7.5	A 3	-	500	-	W	-	W, Mo	Q, Al ₂ O ₃	RF	Little decomposition. $n = 3.92$
Lead Telluride	PbTe	917	<u>51-15</u>	8.16	780	910	1,050	_	Mo, Pt, Ta		_	Al_2O_3 , Gr	RF	Vapors toxic. Deposits aretellurium rich. Sputtering preferred or co-evaporate from two sources
Lead Titanate	PbTiO ₃	_	_	7.52	_	_	_	-	Ta	-	_	_	RF	 :
_ithium	Li	181	-	0.53	227	307	407	G	Ta, SS	-	4	Al ₂ 0 ₃ , Be0	-	Metal reacts quickly in air
Lithium Bromide	LiBr	550		3.46			~500	_	Ni		5—5		RF	n = 1.78
Lithium Chloride	LiCl	605	_	2.07	-		400	_	Ni	_		_	RF	Preheat gently to outgas. $n = 1.66$
Lithium Fluoride	LiF	845	-	2.64	875	1,020	1,180	G	Ni, Ta, Mo, V	V—	s >	Al ₂ 0 ₃	RF	Rate control important for optical films. Preheat gently to outgas. $n = 1.39$
Lithium lodide	Lil	449	-	4.08	6 <u></u> 7	_	400	_	Mo, W	_	8-3	<u>5-3</u>	RF	n = 1.96
Lithium Oxide	Li ₂ 0	>1,700	_	2.01	-	-	850	_	Pt, Ir	_	-	_	RF	n = 1.64
Lutetium	Lu	1,663	-	9.84	-	-	1,300	Ex	Ta	_	()	Al_2O_3	RF, DC	-
Lutetium Oxide	Lu ₂ 0 ₃	-		9.42	-	===	1,400	-	lr	-	-	_	RF	Decomposes

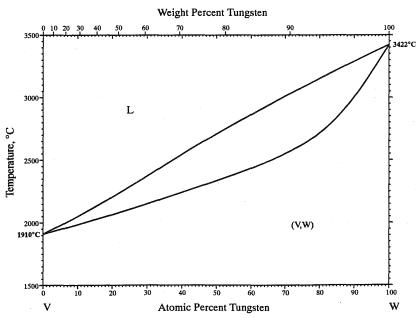
Key of Symbols: * influenced by composition; *** Cr-plated rod or strip; ***all metals alumina coated; **C** = carbon; **Gr** = graphite; **Q** = quartz; **Incl** = Inconel; **VC** = vitreous carbon; **SS** = stainless steel; **Ex** = excellent; **G** = good; **F** = fair; **P** = poor; **S** = sublimes; **D** = decomposes; **RF** = RF sputtering is effective; **RF-R** = reactive RF sputter is effective; **DC** = DC sputtering is effective; **DC-R** = reactive DC sputtering is effective

					Temp.	(° C) for	Given		Evapor	ation Te	echniques	M		
					Vap.	Press. (Torr)		100	The	rmal Source	es 🗸		
Material	Symbol	MP (° C)	S/D	g/cm ³	10-8	10-6	10⁻⁴	E-Beam	Boat	Coil	Basket	Crucible	Sputter	Comments
Thulium	Tm	1,545	S	9.32	461	554	680	G	Ta	-	1-1	Al203	DC	_
Thulium Oxide	Tm203		_	8.90	_	_	1,500		Ir	_			RF	Decomposes
Tin .	Sn	232	-	7.28	682	807	997	Ex	Мо	W	W	Al203	DC, RF	Wets molybdenum Use tantalum liner in E-beam guns
Tin Oxide	SnO ₂	1,630	S	6.95	_	-	~1,000	Ex	W	W	W	Q, Al203	RF, RF-R	Films from tungsten are oxygen deficient, oxidize in air. $n = 2.0$
Tin Selenide	SnSe	861	_	6.18	_	_	~400	G	_	_	23	Q	RF	-
Tin Sulfide	SnS	882		5.22		-	~450	_	2	(Table)		Q	RF	
Tin Telluride	SnTe	780	D	6.48	_	_	~450	-	-	_	-	Q	RF	_
Titanium	Ti	1,660	-	4.5	1,067	1,235	1,453	Ex	W	-	-	TiC	DC, RF	Alloys with refractory metals; evolves gas on first heating
Titanium Boride	TiB ₂	2,900	-	4.50		-		P	-	-		_	RF, DC	
Titanium Carbide	TiC	3,140	_	4.93	-	_	~2,300	_	_	-	_	_	RF, DC	-
Titanium Nitride	TiN	2,930		5.22		-	-	G	Mo	-	: -	·	RF, RF-R, DO	Sputtering preferred. Decomposes with thermal evaporation
Titanium (II) Oxide	TiO	1,750		4.93		_	~1,500	G	W, Mo	-	-	VC	RF	Preheat gently to outgas. $n = 2.2$
Titanium (III) Oxide	Ti203	2,130	D	4.6	_			G	W	22		9 <u>—2</u>	RF	Decomposes
Titanium (IV) Oxide	Ti02	1,830	-	4.26		-	~1,300	F	W, Mo	_	W	_		Suboxide, must be reoxidized to rutile. Tantalune duces TiO_2 to TiO and titanium. $n = 2.616, 2.90$
Tungsten	W	3,410	_	19.35	2,117	2,407	2,757	G	_	_	1 1	_		Forms volatile oxides. Films hard and adherent
Tungsten Boride	WB ₂	~2,900		10.77	_			Р	_	_	-	_	RF	_
Tungsten Carbide	W ₂ C	2,860	_	17.15	1,480	1,720	2,120	Ex	C	_	_	_	RF, DC	-
Tungsten Disulfide	WS2	1,250	D	7.5	-					_	_	_	RF	_
Tungsten Oxide	W03	1,473	S	7.16	_	-	980	G	W, Pt	-		-	RF-R	Preheat gently to outgas. Tungsten reduces oxide slightly. n = 1.68
Tungsten Selenide	WSe ₂	-		9.0	_	_	200		_	_	_	_	RF	_
Tungsten Silicide	WSi2	>900	-	9.4	_	_		_	_	_	1 1	_	RF, DC	_
Tungsten Telluride	WTe ₃	2_3		9.49	_	_		_	_	_	_	Q	RF	_
Jranium	U	1,132		19.05	1,132	1,327	1,582	G	Mo, W	W	W	_	100	Films oxidize
Uranium Carbide	UC2	2,350	_	11.28			2,100	_	_			C	RF	Decomposes
Uranium Fluoride	UF4	960		6.70			300	_	Ni	_	_	_	RF	-
Uranium (III) Oxide	U203	1,300	D	8.30	<u></u>		_	_	W		W		RF-R	Disproportionates at 1,300° C to UO2
Uranium (IV) Oxide	U02	2,878	_	10.96	-	_	_	_	W	_	w	_	RF	Tantalum causes decomposition
Uranium Phosphide	UP2		_	8.57	_	_	1,200	_	Ta	_		_	RF	Decomposes
Uranium (II) Sulfide	US	>2,000	_	10.87	-	_	1,200	_	-	_	_			
Uranium (IV) Sulfide	US ₂	>1,100	_	7.96		_	_	_	W	_	_	_	RF	Slight decomposition
/anadium	V	1,890	-	5.96	1,162	1,332	1,547	Ex	W, Mo	-	_	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	DC, RF	Wets molybdenum. E-beam-evaporated films preferred. n = 3.03
Vanadium Boride	VB ₂	2,400		5.10	40.00	-	-	_	_		_	_	RF, DC	—
Vanadium Carbide	VC	2,810	_	5.77	-	-	~1,800	_	_	_		_	RF, DC	_
Vanadium Nitride	VN	2,320	-	6.13	_	_				_		=	RF, RF-R, DC	_
Vanadium (IV) Oxide	V02	1,967	S	4.34	_	_	~575	_	_	_	_		RF, RF-R	Sputtering preferred.
Vanadium (V) Oxide	V205	690	D	3.36	-		~500	_		3 <u>2 2</u> 2	_	Q	RF	n = 1.46, 1.52, 1.76
Vanadium Silicide	VSi ₂	1,700	_	4.42	_	_	~500	_	_		_	_	RF	
Ytterbium	Yb	819	S	6.96	520	590	690	G	Ta	9 <u>2</u> 2		9 <u>00</u>	DC, RF	<u> </u>
Ytterbium Fluoride	YbF3	1,157	-	0.50	520	390	~800	_	Mo	_			RF	_
I GOLDIUITI I IUUTUC	Yb203	1,107	S	9.17		-	~1,500	0.000	IVIU	277		137	RF, RF-R	


Key of Symbols: * influenced by composition; ** Cr-plated rod or strip; ***all metals alumina coated; C = carbon; Gr = Graphite; Q = GraphitF = fair; P = poor; S = sublimes; D = decomposes; RF = RF sputtering is effective; RF-R = reactive RF sputter is effective; **DC** = DC sputtering is effective; **DC-R** = reactive DC sputtering is effective


What Crucible to use for V?


Desk Handbook:
hase Diagrams for Binary Alloys,
edited by H. Okamoto (ASM
International, 2000).


C, Sr, Ti, W?

H 1		F	lea	cti						n N	itr	ide	e (P	BN)		He 2
Li 3	Be 4				2	xpec s cale	culate	ed fro				B 5	C	N 7	8	F 9	Ne 10
Na 11	Mg 12				1	ree e	nergi	es				AI 13	Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32		Se 34	Br 35	
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47		In 49	S n 50	Sb 51	Te 52	1 53	Xe 54
Cs 55	Ba 56	La 57	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	Ti 81	Pb 82	Bi 83	Po 84	At 85	Rr 86
Fr 87	Ra 88	Ac 89	103														

						Gd 64							
Th	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm	Md	102	Lw 103

H 1				Re	act	ior	IS V	vit	h C	arl	100	ı (F	PG)				He 2
Li 3	Be 4				a	xpec is cal	culat	ed fro				B 5	C 6	N 7	0	F 9	Ne 10
Na 11	Mg 12				.1	ree e	nergi	es				AI 13	Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25			Ni 28				Ge 32		Se 34	Br 35	
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43		Rh 45					Sn 50	Sb 51	Te 52	1 53	Xe 54
Cs 55	Ba 56	La 57	Hf 72	Ta 73	W 74		0s 76				Hg 80		Pb 82	Bi 83			
Fr 87	Ra 88	Ac 89	103														

Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb 70	Lu 71
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md		Lw
90	91	92	93	94	95	96	97	98	99	100	101	102	103

H 1				R	eac	ctio	ns	wi	th	Nb	C 8	Ta	ıC				He 2
Li 3	Be 4				a	xpec s calo ree e	culate	ed fro				B 5	C 6	N 7	0 8	F 9	Ne 10
Na 11	Mg 12				1	ree e	nergi	ies				AI 13	Si 14	P 15	S 16	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23		Mn 25		Co 27		Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43				Ag 47		In 49	Sn 50	Sb 51	Te 52	1 53	Xe 54
Cs 55	Ba 56	La 57	Hf 72	Ta 73	W 74	Re 75	0s 76	lr 77	Pt 78	Au 79	Hg 80	Ti 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra 88	Ac 89	103														

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md		Lw
90	91	92	93	94	95	96	97	98	99	100	101	102	103

H 1					ŀ	lea	cti	ons	S W	ith	Si	C					He 2
Li 3	Be 4				2	expec es calc ree e	culate	ed fro				B 5	C	N 7	0 8	F 9	N e
Na 11	Mg 12				1	ree e	nergi	(Co				AI 13	Si 14	P 15	S	CI 17	Ar 18
K 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29		100000	Ge 32		Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru 44			Ag 47		In 49	Sn 50	Sb 51	Te 52	1 53	Xe 54
C s 55	Ba 56	La 57	Hf 72	Ta 73	W 74	Re 75	O s 76	lr 77	Pt 78	Au 79		Ti 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra 88	Ac 89	103														

						Gd 64							
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md		Lw
90	91	92	93	94	95	96	97	98	99	100	101	102	103