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FIG. 1. Reflection high-energy electron diffraction (RHEED) patterns for
the YBCO tilms grown 2t various temperaturcs.
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Figure 1. Photograph of an infrared image furnace. In this study, we
employed a cold trap in which water is circulating during the growth.




Outline of MBE Lectures ¥ “ARADIM

> Detailed Examples of Oxide MBE
Lectures #5,6 — Suboxide MBE
High Purity Synthesis of Binary Oxides

» How can | gain access to an oxide MBE if | don’t have
one?
Use PARADIM’s oxide MBE (+ ARPES + ...)
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Figure 1. Contours of constant Baliga figure-of-merit (BFOM) for various
conventional, WBG and UWBG semiconductors, drawn on a log-log spe-
cific on-resistance versus breakdown voltage plot. This is the figure-of-
merit of interest for low-frequency unipolar vertical power switches; the
lower right region represents higher BFOM, hence higher performance.
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Figure 6. Photograph of transparent 4”-diameter single-crystal Ga,0;
wafer. Copyright Tamura Corporation via Masataka Higashiwaki, National
Institute of Information and Communications Technology.

4” B-Ga,0;
Single-Crystal
Substrate
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B-Ga,0; has High Bandgap
High Breakdown Field
High Baliga Figure of Merit

Dopable n-Type with good
mobility

Thermal Conductivity
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Conventional (Ga) MBE of 3-Ga,0,

Low Growth Rate
* Growth Rate: 0.2 pym/hr (maximum reported is 0.7 pm/hr)
« Peak Mobility at this Growth Rate: 120 cm?/(V-s) at room temperature

E. Ahmadi, O.S. Koksaldi, S.W. Kaun, Y. Oshima, D.B. Short, U.K. Mishra, and J.S. Speck,
“Ge Doping of B-Ga,0; Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” Applied Physics Express 10 (2017) 041102.

MOCVD is considerably better
* Growth Rate: ~0.5 pym/hr (up to 10 uym/hr reported)
« Peak Mobility at this Growth Rate: 194 cm?/(V-s) at room temperature

Z. Feng, A.F.M.A.U. Bhuiyan, Z. Xia, W. Moore, Z. Chen, J.F. McGlone, D.R. Daughton, A.R. Arehart, S.A. Ringel, S. Rajan, and H. Zhao,
“Probing Charge Transport and Background Doping in Metal-Organic Chemical Vapor Deposition-Grown (010) B-Ga,0,,”
Physica Status Solidi RRL 14 (2020) 2000145.

Can MBE be improved for the growth of /Ga,05?
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Conventional (Ga) MBE of 3-Ga,0; & ~ARADIM
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(a) O-rich growth | (b) Me-rich growth (c) Etching
Substrate ] Substrate Substrate
Me03 Layer Me203 Layer Me203 Layer

O-rich Ga-rich
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2-step reaction mechanism explains:

bes =2/3 do: |2 Ga(g) + 3 0(g) > Ga,0 + 2 O - Ga,05(s) (full Ga incorporation)

bga = 2¢: 6 Ga(g) +30(g) > 3Ga,0 ... nooxygen - no Ga,05(s) formation
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(a) O-rich growth [b) Me-rich growth| (c) Etching
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2-step reaction mechanism explains:
bea=2/3 do: 2 Ga(g) +3 0(g) > Ga,0 + 2 O > Ga,05(s) (full Ga incorporation)
bga = 2¢p: |6 Ga(g) + 3 0(g) > 3 Ga,O ... nooxygen - no Ga,05(s) formation
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(a) O-rich growth (b) Me-rich growth |(c) Etching
Substrate Substrate Substrate
Mep03 Layer Me203 Layer Me203 Layer
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2-step reaction mechanism explains:
bea=2/3 do: 2 Ga(g) +3 0(g) > Ga,0 + 2 O > Ga,05(s) (full Ga incorporation)
bga = 2¢: 6 Ga(g) +30(g) > 3Ga,0 ... nooxygen - no Ga,05(s) formation
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Suboxide (Ga,0) MBE of B-Ga,0; ® “ARADIM
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2-step reaction mechanism explains:

bea =2/3 do: g)+3 - Ga,0 + 2 0 - Ga,03(s) (full Ga incorporation)
bg, = 2¢: 6.G4a(g) + - 3Ga,0 .. nooxygen - no Ga,03(s) formation
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Use Ga,0s(s) rather than Ga(¢)? ¥ “ARADIM
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Maximum Growth Rate = 0.008 um/hr
Ga,0; in Ir crucible at T = 1800-1980 ° C




Use Ga(/) + Ga,05(s) Mixture?

THE PRESSURE OF Ga,0 OVER GALLIUM-Ga;0; MIXTURES

By C. J. Froscr axp C. D. TRURMOND

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey
Received October 28, 1961

TABLE
Mixture with K. Pgazo, atm, AH 08
Ga:Ga,05 = 5:1 T 1.56 X 1074 65.7
1.49 X 1073 66 .3

3.48 X 1073 66.7
9.90 X 1078 66.6

(AH?®s) = 66.3 keal./mole
(AH Ge0)20s = —20.7 keal./mole
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Use Ga(/) + Ga,05(s) Mixture? M - ARADIM

Ga-0 Two-Phase Mixture: Partial Pressures (Zoomed In)
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Use Ga(/) + Ga,05(s) Mixture?

Total pressure = 0.1 Pa

Bell Labs
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Ga,05(s)-rich mixture provides
higher Ga,0/Ga Ratio
in molecular beam




Use Ga(/) + Ga,0,(s) Mixture o “ARADIM
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High growth rate (> 1 ym/hr) and
epitaxial films at low T, (e.g., 450 ° C)




Suboxide MBE of f3- Ga203 Grown at 1.2 pm/hr
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Thermo of Suboxide MBE

"ARADIM

AN NSF MATERIALS INNOVATION PLATFORM

Suboxides offer an alternate means to
navigate kinetic pathways

Comprehensive investigation of
vapor pressures of all binary
oxides (128 oxides + 27 mixtures)

16 evaporate nearly congruently
( ’ B203: Baoy MOOB’ ’

, PbO, , Rb,0, Re,0,
Sb,0,, , SnO, , , and
WO,)

+ 24 more that could be useful
(CeO, Cs,0, DyO, Ero, Ga,0, GdO,
GeO, HfO, HoO, In,0, LaO, LuO,
NdO, , Pro, , Sc0, SiO,
SmO, TbO, , , VO,, and
YO,)
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MIP: PARADIM at Cornell
University, DMR-1539918 Realizing a New Semiconductor for Power Electronic Applicati

_External U

Materials discovery is more than calculating the

properties that a material should have if the atoms

were in desired positions. It is also key to get the atoms into T c1 . c 1 s f3

those desired positions, to see what the properties really are, A prom]Slng matenal 15 ldent]ﬁed by theory
and thus realize the potential benefit of a new material. Making
this happen takes a combination of ideas, capabilities, and
execution—as the recent success by a team led by Assistant
and Associate Professors from the University of Michigan
illustrates.

Theoretical work by the team established that rutile-GeO,—with
its ultra-high band gap (4.64 eV), high mobility, high heat
conductivity, and desired dopability—could provide superior
performance for power electronics. But can this material be
made as a thin film? The common synthesis approach would

John T. Heron and Emmanouil Kioupakis, University of Michigan
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Standard enthalpy of formation (kJ/mol)

tile-GeO,

rely on deposition of the constituting elements, but for GeO, e 10— ] , o
growth is obstructed by a metastable glass phase and the _ S
volatile molecule GeO. The promise. |
The team came to PARADIM and employed a recently . = S
established approach of “sub-oxide MBE"—using partially hlgh Band Gap ‘/ g ;

oxidized GeO instead of Ge—to realize the material in thin film hiah Mobilitv v tel oEll. A

form. Sieun Chae, the same graduate student who did the first- . g y o : e

principles calculations, also grew the films. Her work has hlgh Thermal CondUCtIVIty v ]
realized the first single crystal rutile GeO, thin films. . . 107 460"’-: A8
S. Chae et al. Appl. Phys. Lett. 117, 072105 (2020). But can it be realized? T, ()

Js DMR B'XT'%'S/TL?'EESEARCH Where Materials Begin and Society Benefits l "ARADIM
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Adsorption-Controlled Growth of

e Stannates by Suboxide MBE
- BaSnO; — H. Paik et al., APL Materials 5 (2017) 116107.
- SNO — A.B. Mei et al., Phys. Rev. Mater. 3 (2019) 105202.

- Sr3Sn0 - Y. Ma et al. Adv. Mater. 32 (2020) 2000809.
- Ta,SNO, — M. Barone et al. J. Phys. Chem. C 126 (2022) 3764-3775.

« Gallates by Suboxide MBE
- Ga,053 — P. Vogt et al., APL Mater. 9 (2021) 031101.

e Indates by Suboxide MBE
- In,0O3 — P. Vogt et al., Phys. Rev. Appl. 17 (2022) 034021 .
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Laser off

CO, Laser Substrate Heater

* From EpiRay

* Currently being tested

« Expect On-Line in PARADIM by end of 2022

Homogeneity
at 1000 ° C

Homogeneity
at 1800 ° C

Laser power 95W
Melting starts
(2040 ° Q)

At low.temperature At high temperature ‘

All images courtesy Epiray


https://epiray.de/

Laser Substrate Heater

e Laser heater for MBE

+ T, Up to 2000 °C

* In situ substrate termination
demonstrated for:
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MgO at 1773 °C SrTiO3 at 1460 °C

MgO © o0
AL, 0; W

oM Ja oY
SrTiO e O 1
LaAlo; & ?\ﬁ:o@g
NdGaO; ©
DySCO3

TbScO,



"ARADIM

AN NSF MATE! INNOVATION PLATFORM

Future of Oxide MBE

substrate heating
laser

Expanded Growth Conditions

source heating lasers

beam line

Robust

Achieve Oxidation of the Film

// Prevent Problematic Oxidation
L of the Sources

10-11-10-2 hPa

substrate

sources

R
Q\)

Substrate Termination

Thermal Laser Evaporation
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Video courtesy
of
Epiray GmbH
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