Pb₂Ir₂O₇ Thin Film Growth for Spin Transport

<u>Luke Omodt¹</u>, Maya Ramesh², Anna Park², Xiaoxi Huang², Yorick A. Birkholzer², Dan Ralph²,

Darrell G. Schlom², ¹Augsburg University, ²Cornell University

Background/Motivation

<u>Spintronics</u>

- Replaces absence/presence of electrons with spin states electrons
- More energy efficient
- Faster devices
- Smaller devices

X-Ray Photoelectric Spectroscopy: Atomic Makeup

We can calculate the ratio of Pb to Ir using the characteristic energies from electrons by finding the area under the peaks and multiplying it by the relative sensitivity factor

Iridium has many unpaired electrons resulting in large amounts of spin torque

Pb₂Ir₂O₇ and YSZ are both defect Fluorites

 \rightarrow Close lattice match

- Most spin transport is done on highly <u>asymmetric</u> crystals \rightarrow Pb₂Ir₂O₇ is cubic, so it is highly <u>symmetric</u>
- Different orientations may yield different spin torque

GOAL: Grow stoichiometric Pb₂Ir₂O₇ {111}, {110}, and {100} for spin transport

 Using this method, we found our samples are stoichiometric

X-Ray Diffraction: Crystal Structure

- Using XRD, we can see we have substrate peaks and film peaks
 with no impurities
- Pb₂Ir₂O₇ {111} has growth fringes, signifying a high-quality sample
- Pb₂Ir₂O₇ {110} has faint film peaks which illustrates how difficult it is to grow on this direction

	Pb2lr2O7 {110}			
-	YSZ 110	*		
-				
ty (a.u)	Pb ₂ Ir ₂ O ₇ 220	YSZ 220	*	

Growth Method: Molecular Beam Epitaxy (MBE)

By heating metal sources to
 high temperatures, MBE creates
 a beam of cations aimed at the
 substrate

- We used elemental iridium and lead oxide as sources
- Distilled ozone was our oxidation

Pb₂Ir₂O₇ {100} is similar and has faint film peaks showing this direction is difficult as well

Atomic Force Microscopy

- Samples have many peaks and valleys
- Samples Range from 218.3pm-

source

The cations arrange on the substrate creating a high-quality
 Substrate temperatures was thin film

846.3pm in roughness

 Smooth enough for spin transport measurements

4.38 nm

4.00

3.50

3.00

Conclusions

- We successfully grew stoichiometric Pb₂Ir₂O₇ {111}, {110}, and {100}
- Unconventional spin torque in-plane Pb₂Ir₂O₇ {111}
- We have begun to grow Bi₂Ir₂O₇ {111}, {110}, and {100} to expand our spin transport study