Superconductivity in Ba-doped KTaO$_3$ thin films by Molecular-Beam Epitaxy

Motivation: The Search for Superconductivity in KTaO$_3$

This work is inspired by the researched performed on superconductivity in SrTiO$_3$ bulk versus interface$^{[2]}$. Interestingly, KTaO$_3$ does not share this phenomena and instead demonstrates different superconducting transition temperatures at the interface versus bulk$^{[2]}$. A newfound ability to synthesize KTaO$_3$ by MBE$^{[3]}$ gives opportunity to investigate similar doping on bulk KTaO$_3$ superconductivity.

SrTiO$_3$ and KTaO$_3$

Figure 1: Visualization of KTaO$_3$ (100) growth on GdScO$_3$ (110)

Figure 2: (a) SrTiO$_3$ structure compared to KTaO$_3$ structure and (b) Comparison of superconducting transition temperatures of SrTiO$_3$ bulk$^{[2]}$ and interface$^{[2]}$ KTaO$_3$

Molecular-Beam Epitaxy

- Effusion cells \rightarrow provide elemental beams
- RHEED gun (Reflective High-Energy Electron Diffraction) \rightarrow in-situ monitoring of crystalline/film quality
- High Vacuum Environment
- Quartz Crystal Microbalance (QCM) to approximate source fluxes
- One-of-a-kind laser substrate heater

Molecular beam epitaxy of KTaO$_3$

Figure 3: Rocking curves of (a) KTaO$_3$ on GdScO$_3$ and (b) KTaO$_3$ on TbScO$_3$

Metallic Behavior of Ba-doped KTaO$_3$ films

Figure 4: (a) X-Ray Diffraction of KTaO$_3$ growth on GdScO$_3$, and (b) Magnified X-Ray Diffraction of 100 peak of KTaO$_3$ growth on GdScO$_3$ to ensure crystallinity upon barium incorporation into KTO lattice

Figure 5: (a) X-Ray Diffraction of KTaO$_3$ growth on TbScO$_3$ and (b) Magnified X-Ray Diffraction of 100 peak of KTaO$_3$ growth on TbScO$_3$ to ensure crystallinity upon barium incorporation into KTO lattice

X-Ray Diffraction

Figure 6: R vs T (a) KTaO$_3$ films grown on GdScO$_3$ and (b) KTaO$_3$ films grown on TbScO$_3$.

The Effect of Strain

Enhanced superconductivity was observed in strained SrTiO$_3$ films and similar principles were applied to KTaO$_3$ to study if similar effects occur.

Figure 7: Reciprocal Space Mapping for (a) KTaO$_3$ on GdScO$_3$ and (b) KTaO$_3$ on TbScO$_3$ to ensure films are commensurately strained.

Conclusions and future plans

- Minimum barium source temperature that provides sufficient carriers to enable metallic behavior down to 4K in KTO films
- Secondary Ion Mass Spectroscopy to determine precise barium concentration as well as shallow and deep level donors
- Dilution Fridge measurements to observe if 50mK transition occurs.

Acknowledgements

This research is supported by the National Science Foundation Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM) under Cooperative Agreement No. DMR-2009380 and National Science Foundation (REU Site: Summer Research Program at PARADIM) under Cooperative Agreement No. DMR-2150446.

References

[1] Hayley Ruddick$^{[1]}$

