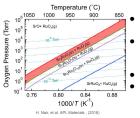


Epitaxial Growth and Characterization of Layered Ruddlesden-Popper Sr_{n+1}Ru_nO_{3n+1}

Ian Mercer¹, Neha Wadehra², Darrell Schlom² ¹Materials Science and Engineering, North Carolina State University ²Department of Materials Science and Engineering, Cornell University

Introduction

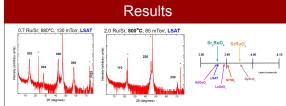
changing stoichiometry


cuprates

Strontium Ruthenate was a prospective high T_c superconductor due to its similar crystal structure and conduction to


 Predicted spin triplet superconductivity Wide range of magnetic ordering from

- Sr₂RuO₄ and SrRuO₂ have been explored thoroughly. but Ruddlesden-Popper (RP) phases remain unexplored
- By varying number of perovskite lavers magnetization can change
- Possible interesting phenomena undiscovered


- n = 1
- Use thermodynamics to guide arowths Growth of RP phase is function
- of growth temperature and oxygen pressure · Lack of data for RP phases
- Mimic crystal structure of higher RP phase using Sr_RuO, and SrRuO, as building blocks

- growth, keeping temperature and oxygen pressure constant
- Supply excess Ru for adsorption control
- SrTiO₂ (001) substrates are used due to • relative lattice match to two phases

Results

0.5 and 1.0 Ru/Sr. 800°C. 85 mTor Grew n=5 member of RP series using stoichiometric flux control growth Next, grow in adsorption STO (001) control flux growth to avoid n=4 impurities Sr,RuO 0.7 Ru/Sr. 880°C. 85 mTon 2.0 Ru/Sr, 880°C, 85 mTorr Sr₂RuO₄ and SrRuO₂ both can be grown at 880°C and 85 mTorr on STO (001) in adsorption control flux arowth mode

- LSAT (001) substrate improves Sr₂RuO₄ quality further due to lattice matching and may help improve the heterostructures
- SrRuO₂ growths to be checked on LSAT (001) at higher growth temperatures

Conclusions

- Sr₂RuO₄ and SrRuO₅ building blocks can be used to grow higher n-members of the Sr_{n+1}Ru_nO_{3n+1} RP series eliminating the thermodynamic bottleneck
- More growth conditions in adsorption controlled growth mode needs to be explored to get phase pure films

Acknowledgements

I would like to thank my mentor Neha, Darrell Schlom for allowing me to do great research in his group, and NSF for allowing the PARADIM program to do groundbreaking research.

References

Y. Maeno, et al. Physics Today 54 (1), 42-47 (2001)

x22

D. Schlom, et al. Journal of the American Ceramic Society 91; [8] 2429-2454 (2008)

H Nair et al API Materials 6 046101 (2018)

https://capricom.bc.edu/wp/zelikoviclab/research/molecular-beam-epitaxy-mbe