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The current coherence time record of 0.3 milliseconds in superconducting 
Tantalum remains insufficient for most problems. A recent discovery by 
McLellan and Dutta et. al [1] demonstrated 1/3rd of qubit decoherence was 
attributable to oxide layers grown on the material surface. Based on this 
information, this project focused on the creation and expansion of metrics that 
quantify the desirability of a material based on its predicted oxide amounts and 
predicted critical temperature. The gradient boosting algorithm XG Boost was 
used for predictive models, and the Nelder-Mead optimization algorithm was 
used to solve the Convex Hull minimization problem posed when calculating 
energetically favorable oxide amounts.

Abstract

While using machine learning methods to predict material properties, it is 
important to consider the inherent limitations of these methods. As seen in the 
poor predictions of the Oxidation Metric, input data may not be enough to 
capture the complexity of certain features. Additionally, undiscovered relations 
between materials, such as those necessary for room-temperature 
superconductivity, may not be contained within data collected thus far due to 
the lack of discovered room-temperature superconductors to begin with. 

For future usage of these metrics, the code necessary to quickly build these 
models is available on github:  https://github.com/nsong03

Calculated Metrics

This project used data from the Materials Project and the Supercon database. 

For the Nelder-Mead optimization during the Oxidation Metric calculation, a 
maximum iteration of 100000 was imposed for computational limitations. 
Constraints to preserve the conservation and positivity of mass were 
implemented by multiplying our loss function (The total energy of the oxides, 
or A · E	)	by a simple exponential function penalizing constraint breaches.

After obtaining initial calculations for the Oxidation Metric and Critical 
Temperature, these metrics were extended to all materials on our dataset using 
a predictive model based on the XG-Boost algorithm. Input data was formed 
based on the elemental composition of each material, and elemental 
information was weighted according to the parsed chemical formula. Settings 
for the XG Boost algorithm were as follows:

Evaluation Metric: RMSE, Max Depth: 16, Minimum Weight: 1, Learning 
rate: 0.02, Boosting rounds: 375.

Optimization Methods
Due to the low number of boosting rounds and limited tree complexity used 
with the XG Boost algorithm, overfitting to our large dataset for these results 
is highly unlikely. Expanding on Hamidieh’s work [3], we found that the 
critical temperature of materials could be accurately predicted using machine 
learning methods solely from elemental data. However, our calculated oxide 
metric was not so predictable. 

It was found that the critical temperature of materials in the SuperCon dataset 
could be predicted with an RMSE of ~9.4, with a significant portion of error 
contributions coming from repeated entries within the SuperCon dataset itself. 

For the Oxidation Metric however, accurate predictions were not made with 
our optimization algorithm. A consistent RMSE of > 40 was observed, 
regardless of boosting rounds or tree complexity. This implied that the input 
elemental composition information was not enough to form statistically 
meaningful connections between materials and our calculated Oxidation 
Metric. A simpler oxidation metric was tested with only the single most likely 
oxide used for calculations; This yielded an RMSE of < 9.

Results

This work has developed a collection of metrics to analyze materials on a large 
scale. By locating materials grouped within a close Cartesian distance to each 
other (within the context of our three metrics), clusters with similar 
superconducting properties can be identified. As the materials project is 
inclusive of many theoretical materials, this provides valuable initial insights 
into which candidates may be useful for high Tc, high coherence time 
superconductors. Additional products such as the solution to the Convex Hull 
problem provide initial estimates for oxide layer thicknesses. It remains an 
open, important question of why exactly oxide layers promote qubit 
decoherence. Initial ideas point towards the two-level systems created by 
dangling electrons in the oxide layers, noise created by rough interfaces, or 
external microwave / phonon vibrations amplified in between the oxide layers. 
To approach this goal, simulations are currently underway on Tantalum 
oxidation. 

Conclusions

The noise introduced by oxide layers might be avoided by selecting 
superconducting materials that do not form oxides, or form thermally 
removable oxides. To quantify these options, the following were calculated.

A. Oxidation Metric How energetically favorable is oxide formation?
  For a given material Q, say we have n possible oxides and m elements in 
its elemental formula. We can create the following matrices / vectors.

• Matrix M, n by m: From the n possible oxides, find how much of each 
m elements they contain. Combine these coefficients into M such that 
each row contains the amount of element found in the oxides.

• Vector E, n by 1: Contains the respective formation energy of oxides
• Vector C, m by 1: Contains the ordered amount of Q’s elements in each 

oxide from the parsed formula.
• Vector A, n by 1: Target vector with amounts of each oxide. Will be 

optimized, but initial guess is MT · C.
These inputs can then be input into a Nelder-Mead optimization, 
discussed further in methods. The final metric is then:

ΔHMaterial = QFormation	Energy	 ΔHOxides =-A · E	 (Net	Energy)

𝑴𝒆𝒕𝒓𝒊𝒄 = 1	 −
ΔHOxides − ΔHMaterial

ΔHOxides

B. % Meltable Oxide How much of the oxide is thermally removable?
 The melting temperature of each oxide can be found through ASU Hong 
Group’s Melting Temperature prediction API. Finding the optimized mass of 
each oxide from part A, we get:

𝑴𝒆𝒍𝒕𝒆𝒅	𝑶𝒙𝒊𝒅𝒆	% 	=
𝑴𝒂𝒔𝒔	𝒐𝒇	𝒎𝒆𝒍𝒕𝒂𝒃𝒍𝒆	𝒐𝒙𝒊𝒅𝒆𝒔

𝑵𝒆𝒕	𝒎𝒂𝒔𝒔	𝒐𝒇	𝒐𝒙𝒊𝒅𝒆𝒔

C. Critical Temperature (Tc) When is our material superconductive?
 In general, higher critical temperatures correlate to higher qubit 
coherence times – See Methods for prediction algorithm.

Discussion


