

Epitaxial BaTiO₃ on β -Ga₂O₃ (100)

Selena Coye¹, Kathy Azizie², Luke Omodt³, Pj Miller⁴, Darrell G. Schlom⁵ ¹Department of Physics, Clark Atlanta University,²Department of Materials Science and Engineering, Cornell University, ³Department of Physics, Augsburg university, ⁴Department of Chemistry, Texas A&M, ⁵Department of Materials Science and Engineering, Cornell University

Abstract & introduction

- Characterization of single crystal β-Ga₂O₃
- films grown on SrTiO3 (100) substrates by MOCVD
- Gallium oxide has a very high bandgap(4.9ev) and a high voltage break down
- Barium titanate has a high dielectric constant
- BaTiO₃ has similar properties to SrTiO₃ (Both perovskites)
- BaTiO₃ dielectric improves the breakdown electric field
- Ohio State group demonstrates that their $BaTiO_3/Ga_2O_3$ heterojunction diode to have a breakdown electric field of 5.7 MV/cm
- Goal: Epitaxial BaTiO₃ grown on β -Ga₂O to have a breakdown electric field that overcome 5.7 MV/cm

Fig. 1

Using MBE, we calibrated Barium flux and titanium flux to get a 1 to 1 ratio (stoichiometry) of BTO by measuring the average intensity of the points in fig 1. from peak to peak or trough to trough. We check this calculation with Rheed and XRD.

