
Appl. Phys. Lett.. 2022;121(4). doi:10.1063/5.0096394

Doping of α−(AlxGa1−x)2O3 using Suboxide 

Molecular-Beam Epitaxy
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• Previous computational work has predicted the

Al composition at which dopants transition from

shallow to deep donors in α−(Al𝑥Ga1−𝑥)2O3
7

• The planned growth series will vary

• Dopant (Sn 8, Ge 9, Si 10)

• Doping level (1019 , 1020 cm−3 )

• Film Composition (0, 20, 40, 60, 80% Al)

• Thickness (~20, ≥100 nm)

• Sn doping resulted in insulating films at all tested 

conditions

• MOCATAXY observed during growths with Sn 

• Further work is necessary to understand doping 

of α−(Al𝑥Ga1−𝑥)2O3 by S-MBE

• Films were not conductive enough to measure a resistance with a multimeter

• Unclear if dopants are being incorporated into film during growth

• MOCATAXY was observed during growths with Sn

• Growth rate increased

• Composition no longer linearly controlled

• Complete doping series for Si and Ge

• SIMS analysis to investigate incorporation of

dopants in film

• High temperature hall measurements will be done

on nonconductive films to see if donor activation

will occur at nonstandard conditions

• Hall measurements to determine electron mobility

and sheet carrier concentration of any conductive

samples

• Ion implantation on undoped samples

• Ga2O3 has an ultrawide-bandgap and high

breakdown field making it a useful material for

high power and ultra-high frequency devices 1

• Alloying Ga2O3 with Al2O3 extends the bandgap

and breakdown field even further

• α−(Al𝑥Ga1−𝑥)2O3 has a bandgap ranging from

5.4-8.6 eV which can be tuned based on the Al

composition 2

• If successfully doped, α−(Al𝑥Ga1−𝑥)2O3 would

be the highest bandgap and highest breakdown

field semiconductor

• Molecular-beam Epitaxy (MBE) has grown the

highest quality α−(Al𝑥Ga1−𝑥)2O3 films over the

whole range of Al composition, but has slow
growth rates, around 0.2 µm/hr, compared to

other epitaxial growth methods 3
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• All films were grown by S-MBE on A-plane 

Sapphire substrates

• X-ray diffraction (XRD) and X-ray reflectivity 

(XRR) were used to confirm film composition and 

thickness of each film

• The two-point resistance of each sample was 

measured using a multimeter

• Suboxide MBE (S-MBE) simplifies the growth

reactions of for III-O materials, including Ga2O3,

growth allowing for increased growth rates while

maintaining high film quality

• Observed Changes:

• Increases growth rate

• Allows for linear composition control

• Increases accessible growth regime

• Can grow whole Al composition range

S-MBE 4,5

• Metal-oxide-catalyzed epitaxy (MOCATAXY) 

utilizes a catalytic element to increase the 

growth rate through metal-exchange catalysis

• Sn and In catalyze Ga2O3 growth

• Potential Benefits:

• Increases growth rate

• Improves surface morphology

• Stabilizes previously unstable phases 

• May enhance crystalline quality

MOCATAXY 6
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