

Epitaxial Lift-Off of Barium Hexaferrite Membranes

Clara Jackson¹, Evan Li², Anna Park², Darrell G Schlom² ¹Department of Material Science, Cornell University, Ithaca, NY USA ²Department of Physics, Clark Atlanta University, Atlanta, Ga USA

Introduction: Expanding BaFe₁₂O₁₉

- Barium hexaferrite (BaFe₁₂O₁₉, BaM) is a ferrimagnetic material with high Curie temperature and chemical stability, commonly used in refrigerator magnets.
- This research explores BaFe₁₂O₁₉ beyond these traditional use by developing freestanding membranes via Molecular Beam Epitaxy (MBE). These innovations could advance electronics.

Strain-Induced Ferroelectricity

- Barium hexaferrite may exhibit ferroelectricity under strain. Density Functional Theory (DFT) calculations indicate that compressive strain distorts the crystal lattice.
- This distortion disrupts the centrosymmetric point group, shifting BaM enabling electric polar order. Increased strain could lead to ferrielectric behavior.

α-Fe₂O₃ Sacrificial Layer

Lift-Off Process

Barium Hexafe rrite α-Fe₂O₂

Acid	Etching rate
concentration	(nm/min)
HCl 15%	~0 for 1 hour
	etching
HCl 18%	0.4 nm/min
HCl 24%	1.8 nm/min

Slow etching rate even with

24% HCI

Iron oxide (α-Fe₂O₃) unexpectedly formed during BaFe₁₂O₁₉ growth. It acted as a sacrificial layer, enabling the BaFe₁₂O₁₉ membrane to detach from the substrate through HCI etching, resulting in a freestanding membrane.

2.3 nm

indicating the etching was too aggressive.

1.9 nm 1.0 1.0

XRD comparison of before and after etching BaM in 36% HCl

The before and after images confirmed that the BaFe₁₂O₁₉ film did not remain intact post-etching

ZnO Sacrificial Layer

Before *=YSZ111 Time: 5 sec 8mM FeCl₃

Sapphire

- 0.0
- Zinc Oxide (ZnO) has proven to be an effective sacrificial layer for the epitaxial lift-off of BaM due to its compatibility.
- This layer, easily dissolved in mild etchants like 8 mM FeCl₃, allowed for etching in only 5 seconds.
- The successful lift-off demonstrates ZnO's potential.

Conclusion

- In this study, we identified ZnO as a promising sacrificial layer for lifting off BaM
- The successful ZnO etching shows its potential to help create freestanding BaM membranes, allowing exploration of ferrielectric properties through strain engineering.

Future Experiments

- Future experiments will involve growing Barium Hexaferrite (BaM) on Zinc Oxide (ZnO) as the sacrificial layer.
- The focus will be on optimizing the epitaxial lift-off process to create freestanding BaM membranes.
- We will test various etching conditions and FeCl₃ concentrations to refine the lift-off
- · Additionally, we will explore how these freestanding membranes can induce ferrielectric properties through strain engineering.