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SrTiO3/PbTiO3 (STO/PTO) superlattices have been previously studied for their unique topo-
logical phases due to their strong coupling between polarization and strain. These properties,
particularly heat conductivity, can be tuned by varying the thickness of layers, the strain imposed
by the substrate, and the application of an external electric field, making them a strong candidate
for novel energy harvesting, phononic storage, and computation devices. The atomistic Green’s
function method (AGF) has emerged as a valuable tool for understanding phonon transport across
interfaces. The document below outlines how I may apply AGF to understand the heat-conducting
properties of STO/PTO superlattices and their evolution under the influence of an external elec-
tric field using first-principle calculations and molecular dynamics (MD) using machine learning
potentials.

I. BACKGROUND

Superlattices have become objects of deep interest due to
their tunable material properties, particularly heat con-
ductivity. For example, researchers were able to measure
the change in thermal conductivity in strain symmetrized
Si/Ge superlattices on Si(111) [1]. Furthermore, ferro-
electric materials were not only found to have a tun-
able thermal conductivity via experimentally accessible
fields [2], but the domain walls (DWs) can be written and
erased, providing a versatile way to dynamically modu-
late heat fluxes [3]. The combination of these properties
makes STO/PTO superlattices great candidates for the
creation of efficient heat management, energy harvesting,
and phononic computation and storage devices.

Modeling these systems has been met with difficulties
as large supercells are required to model DWs, ham-
pering the use of accurate ab initio methods such as
density-functional theory (DFT). Furthermore, the rel-
atively poor transferability and accuracy of the inter-
atomic potential modes available for perovskite oxides
have limited the use of molecular dynamics to model
these larger systems . However, the use of machine learn-
ing interatomic potentials offers versatile and transfer-
able potentials [4], potentially circumventing the latter
problem.

To understand the nature of thermal conductivity in
superlattices, particularly how heat is transferred at the
interfaces, I use AGF methods. AGF methods allow for
the calculation of a transmission probability function,
giving us information about which vibrational modes are
transmitted through the interface. With a little more
work, I am able to find the polarization-specific trans-
mission functions. Note that this is not possible with
the standard AGF output and requires additional mode-
resolved analysis rather than being a trivial extension of
the method. While the transmission probability func-
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tion gives us a lot of valuable information, I can use it
to calculate the heat conductivity of the superlattice. It
is important to note that the two most common atom-
istic transport models besides AGF are direct MD meth-
ods and lattice dynamics (LD). MD is the most direct
of these three methods, simulating the thermal proper-
ties in the time domain. Direct MD methods were not
used here as spectral phonon transmission information
requires the use of carefully controlled MD simulations
known as wave packet simulations, typically involving
specific initial displacement patterns. Furthermore, di-
rect MD methods are expected to be used at temper-
atures higher than the Debye temperature, where the
quantum nature of phonon occupation can be ignored.
Furthermore, AGF considers the lattice-dynamical

equations and, unlike LD, requires only a few matrices
that embed in the contacts; detailed boundary condi-
tions are handled through the self-energies, making the
method most compatible with standard density func-
tional perturbation theory (DFPT)/MD workflows. The
AGF method is ideally suited for a geometry shown in
Fig. 1, where a small ”device” region is connected by
large reservoirs, also called contacts, that are held at
constant temperature. AGF methods aim to compute
the spectral transmissivity for phonon transport from
contact 1 to contact 2 to obtain the interface thermal
conductance. It’s important to note that the device is
assumed to be small enough that phonon transport can
be considered ballistic or coherent. This is not much of
an issue to begin with as wave-like phonons dominate
the heat-conducting properties of superlattices when the
layer thickness is kept small but more advanced formu-
lations can include anharmonic phonon-phonon scatter-
ing, which captures incoherent transport beyond the har-
monic AGF framework.
To calculate the thermal properties at the interface,

AGF must first calculate the transmission probability
function with respect to angular frequency, given as

T (ω) = Tr[ΓLGdΓRG
†
d] (1)
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FIG. 1. Schematic of a typical phonon transport problem con-
sidered by AGF formulation. It is assumed that all reflections
and mode mixing due to harmonic scattering are encoded at
the boundary and coherent phonon transport occurs in the
device region. H1, H2 and Hd represent the harmonic matri-
ces of isolated contacts and the device, respectively. [5]

Where Gd represents the subset of the total Green’s
function corresponding to the device and ΓL and ΓR is
the ”escape rate” or ”braodening matrices” for the con-
nection between the left (or right) contact at the device,
given as

ΓL(R) = i[ΣL(R) − Σ†
L(R)]

where Σ is the self-energy matrix associated with ei-
ther the left or right contact. Using the transmission
probability function and Landauer expressions [6], the
heat current is given as

J =
1

2π

∫ ∞

0

ℏωT (ω)[nB(ω, TL)− nB(ω, TR)]dω

where nB is the Bose-Einstein distribution and the lin-
ear response thermal conductance for small ∆T is given
as,

κ(T ) =
1

2π

∫ ∞

0

ℏωT (ω)
∂nB(ω, T )

∂T
dω (2)

II. METHODS

A. AGF Implementation

The AGF method was implemented in Python and be-
gan with the loading of the interatomic force constants
(IFCs) of the system, calculated using Abinit and loaded
using Abipy. Since we are isolating the interface in the
device, the contacts are modeled as bulk STO and PTO,
respectively. Loading the IFCs and atomic masses allows
us to construct the mass-normalized dynamical matrices,
whose components are given by

Hij =
Φij√
mimj

where Φij are the force constants and mi is the atomic
mass. From bulk STO and PTO IFCs, we can extract the
onsite force constants within a layer, H00, and interlayer
coupling constants to the next layer, H01. These are
required to compute the surface Green’s functions for the
semi-infinite contacts. From the 1x1 superlattice IFCs,
we then build the full device dynamical matrix HC using
only the interactions within the central region.
The program will then identify the atoms at the edges

of the STO and PTO bulk structures and the left and
right sides of the superlattice cell. This allows us to
calculate the portion of the mass-normalized dynamical
matrices associated with the coupling between the semi-
infinite contacts and the finite device.

HCL = coupling between STO and superlattice

HCR = coupling between PTO and superlattice

I then compute the retarded surface Green’s function of
each semi-infinite contact using the Sancho–Rubio deci-
mation (“doubling”) scheme, which iteratively integrates
out deeper layers of the lead along the transport direc-
tion. First, atoms are grouped into principal layers, the
smallest repeatable unit such that the lead dynamical
matrix is block-tridiagonal, with on-site block H00 and

nearest-layer couplings H01 and H10 = H†
01. Defining

z = (ω + i0+)2 with a small 0+ > 0 (we use 0+ = 10−4

in code), the iteration starts from

ε(0) = H00

α(0) = H01

β(0) = H10

g(n) =
[
zI − ε(n)

]−1

and renormalizes the surface layer as

ε(n+1) = ε(n) + α(n)g(n)β(n) + β(n)g(n)α(n)

α(n+1) = α(n)g(n)α(n)

β(n+1) = β(n)g(n)β(n).

When the couplings vanish numerically (we use a toler-
ance of 10−8), the surface Green’s function is gs(ω) =[
zI − ε(n⋆)

]−1
. These gL(ω) and gR(ω) are then embed-

ded into the device via the self-energies

ΣL(R)(ω) = H†
C L(R) gL(R)(ω)HC L(R)

ΓL(R) = i
(
ΣL(R) − Σ†

L(R)

)
,

so that the device Green’s function and transmission are

GC(ω) =
[
zI −HC − ΣL − ΣR

]−1

T (ω) = Tr
[
ΓLGCΓRG

†
C

]
.

This lets us compute T (ω) on a frequency grid using
only the bulk IFC-derived blocks (H00, H01) for each con-
tact, the device matrix HC , and the interface couplings
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HC L, HC R, while the semi-infinite parts of the leads are
accounted for through gs.
It is essential to note that the factor 0+ is a damping

factor associated with connecting our finite system to the
hypothetical infinite bulk in the contacts. As long as 0+

is smaller than the characteristic frequency resolution,
results are unaffected apart from an artificial broadening
of sharp modes. Prior literature suggests,

0+(ω) = δ0ω
2 δ0 ∈ (10−9, 10−3)

As the value of δ0 is reduced, accuracy improves as
computational cost increases.

B. Computational Details

To calculate the IFCs of bulk STO and PTO, I used
the popular DFT software Abinit, which uses DFPT. In
all calculations, I used the norm-conserving pseudopo-
tentials obtained from the PseudoDojo database con-
structed using the Perdew-Burke-Ernzerhof (PBE) GGA
exchange-correlation functional. The IFCs of bulk STO
were calculated using a 6x6x6 Monkhorst-Pack k/q point
grid with an ecut of 50 Ha and a 6x6x6 Monkhorst-Pack
k/q point grid with an ecut of 40 Ha for PTO. As for the
1x1 STO/PTO superlattice cell, I used a cubic cell with a
relaxed lattice parameter 3.6133602807 Å and calculated
IFCs using a 6x6x6 Monkhorst-Pack k/q point grid and
an ecut of 40 Ha. The stress induced on the lattice was
given as,

stress tensor

[
GPa

]
=

−7.4875 0.0 0.0
0.0 −7.4875 0.0
0.0 0.0 14.9839


after relaxation under constraints. As stated previ-

ously, I set 0+ to be 10−4 and converged the surface
Green’s function with a tolerance set to 10−8. In the
future, I would like to have the factor δ0 be dependent
on the frequency of the mode ω.

C. Experimental Setup

To give us insight into the effect of external electric
fields on STO/PTO superlattices, the largest challenge
to overcome is the simulation of DWs, as DWs often
require extensive cells, too large for first-principle cal-
culations to handle. As stated previously, the best way
to circumvent this problem is to use MD, a less compu-
tationally intensive way to calculate the large cells re-
quired to simulate DWs. As ground truth, I’ve chosen
to simulate the unperturbed 1x1 superlattice cell using
DFT. This calculation will be reproduced using MD to
ensure that the ML potentials that will be used in the
MD simulation are representative of our first-principles

calculations. Furthermore, to capture longer-range ef-
fects that are present in the periodic superlattice, I will
extend the device to include more than a single interface.
The biggest issue when doing this is that the phonons
must stay coherent in the harmonic formulation of the
AGF method. While I expect wave-like phonons to dom-
inate for superlattices with single alternating layers, as
the mean free path of the phonon will be larger than the
spacing between interfaces, it will be important for me to
consider the effect of anharmonic extensions of the AGF
method. I expect that the results will converge as I con-
tinue to add layers to the device. This will also open
up the possibility of simulating 2x2, 2x3, 3x2, and 3x3
lattices, although these will be more difficult to simulate
using first-principle calculations. Furthermore, I would
like to do a quick study to understand how my results
change if I were to manually freeze in DWs in the device,
a crude approximation of DWs, which will hopefully cap-
ture their qualitative features. It would be convenient if
a rough approximation of the DWs captured the behav-
ior observed in a more realistic simulation of the DWs in
STO/PTO superlattices.
Using the above first-principle calculations, I can then

help train my ML potentials that will be used in MD
simulations. Using LAMMPS, I plan to rerun many of
the first-principle calculations run above to ensure that
my ML potentials accurately represent the interatomic
potentials calculated in the first-principle calculations.
Once I ensure this is the case, I will use MD to extend the
size of my cells, particularly when freezing in the DWs.
With this series of calculations, I hope to gain a better
understanding of the effect of the external electric field
(and therefore DWs) on the thermal properties of the
lattice. If we can gain a deeper understanding of how the
phonon modes are being filtered by the DWs and layer
thickness, we can hopefully be in a much more informed
position to predict materials with similar properties as
STO/PTO superlattices.

III. FUTURE WORK

Moving forward, I hope to continue the calculations
outlined above. As of the end of my stay at PARADIM
at Cornell University, I was able to finish the calcula-
tion for the IFCs of bulk STO, PTO, and STO/PTO
1x1 superlattice. While I’ve also become more familiar
with MD, particularly LAMMPS, while at PARADIM, I
would still like to continue learning how to effectively use
the software and use ML potentials. I will also need to
do more research on which ML potential I would like to
move forward with; there is a plethora for me to try.
Finally, I would like to note that most of my time at

PARADIM was spent growing STO/PTO superlattices
and developing software for this project that, while it was
not ultimately used in the final version of this project,
will be repurposed for other projects being conducted at
Harvey Mudd College.
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rali, enA phononic switch based on ferroelectric domain
walls, Physical Review B 96, 140101 (2017).

[4] G. Wang, C. Wang, X. Zhang, Z. Li, J. Zhou, and Z. Sun,
enMachine learning interatomic potential: Bridge the gap

between small-scale models and realistic device-scale sim-
ulations, iScience 27, 109673 (2024).

[5] S. Sadasivam, Y. Che, Z. Huang, L. Chen, S. Ku-
mar, and T. S. Fisher, enTHE ATOMISTIC GREEN’S
FUNCTION METHOD FOR INTERFACIAL PHONON
TRANSPORT, Annual Review of Heat Transfer 17, 89
(2014).

[6] S. G. Das and A. Dhar, enLandauer formula for phonon
heat conduction: relation between energy transmit-
tance and transmission coefficient (2012), arXiv:1204.5595
[cond-mat].


