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Abstract

The Applied Physics Laboratory (APL) at Johns Hopkins University (JHU) is program-
ming an AI/ML algorithm that can generate potential superconducting structures (PSS).
The project is to utilize Density Functional Theory (DFT) to calculate the formation en-
ergies of these PSSs and feed the data gathered back into the algorithm for training pur-
poses. What was found is that the calculations for the cuprates (copper-oxygen) compounds
BaSrLiCu3O5 and BaSr2LiCu4O7 were completed but were not energetically favorable rel-
ative to the carbonate (carbon-oxygen) oxide reagents. In addition, many other cuprates
were not completed in a DFT calculation because of the exotic crystal layout of the PSSs.
Rb2NaSnBr6 shows to be a promising candidate; however, more investigation is necessary.
What these calculations show is that DFT is able to model different reactions and investigate
the energetic favorability.

1 Introduction
Superconductivity is a massive scientific frontier in science and is heavily investigated by

numerous lab groups across the globe due to their lack of resistivity and perfect diamagnetic
properties. It is a state of matter that is only achieved through low temperatures approaching
subzero (0K) predominately around 0K-10K; however, some superconductors are recorded to
ascend higher than 100K. Potential applications of superconductors are the power distribution
industry as electricity is more conserved because there is no energy lost in resistance, Maglev
trains that utilize superconductors that oppose all magnetic fields allowing the trains to float
on frictionless tracks, magnetic resonance imaging (MRI) devices which are a huge application
of superconductors, etc. The problem with superconductors is that the state of matter only
exhibits at critically low temperatures, therefore, it is difficult to apply without a way to bring
the temperature of the said material to their respected critical temperatures Tc. Essentially, this
can lead to an immense cost of operations using an expensive substance such as liquid helium
to bring the superconductor to Tc.

With the emerging field of artificial intelligence (AI) and machine learning (ML), the Applied
Physics Laboratory (APL) at Johns Hopkins University (JHU) is attempting to push further
discovery of superconductors by programming their own AI/ML algorithm to see if it can
potentially discover new superconducting structures, which may assist in the discovery of a
superconductor with a Tc of relative room temperature.

The algorithm generates numerous potential superconducting structures (PSS), which is
then narrowed down with scientific crystal structure intuition and it is also synthesized to test
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for superconductivity. This report will cover a Density Functional Theory (DFT) approach to
the process of training this APL AI/ML algorithm, as the results gained in this process are then
fed back into the algorithm which will then generate more plausible superconducting structures.
It will also show the capabilities that DFT has in modeling different reactions.

2 Methodology
The formation energies Ef of PSSs were the focus of this project. DFT calculations were per-

formed on all structures including the PSSs and relevant reagents, potentially used in the synthe-
sis process. A free open-source package, Quantum Espresso (QE) was used for the calculations,
in which it contains a number of pseudo-potentials, coded by independent and inter-operable
groups. The primary functional type used was the Perdew-Burke-Ernzerhof Generalized Gra-
dient Approximation (PBE-GGA) for all structures, the self-consistent field (SCF) calculation
was used to find enthalpy of the PSSs and reagents, and the calculations are all done at OK.
The structures for the reagents were all downloaded from Materials Project. To accept the
accuracy of the DFT calculation, it must complete as that proves the calculation process was
properly executed. Once completed, a stoichiometry equation is set up with a PSS being one
of the products, along with the relevant reagents and extra products as equation (1) specifies.
The formation energy of the PSS is then calculated using equation (2) where the difference of
the sum of Ef of products (ΣEf Prod) and the sum of Ef of reagents (ΣEf Reag), divide it by
the sum of atoms of the current PSS (ΣPSS). If Ef equals a positive, DFT predicts the PSS
will not form, and if negative, DFT predicts the PSS might form. Data is then compared to
experimental data, and fed back into the algorithm.

Reagents → PSS + Products (1)
ΣEf P rod−ΣEf Reag

ΣP SS (2)

3 Results and Discussion
Numerous calculations were done on multiple PSSs with most not converging under a SCF

calculation (mostly the cuprates did not converge), however, for the sake of this report, we will
condense the findings down to Rb2NaSnBr6 shown in figure 1, BaSrLiCu3O5 shown in figure
2, and BaSr2LiCu4O7 shown in figure 3. The table provided displays different stoichiometry
equations and their Ef relative to the reaction. When dealing with all three of the PSSs
compounds, they are predicted to be energetically favorable with the elements as their reagents.
With BaSrLiCu3O5 and BaSr2LiCu4O7 as the respected carbonates (carbon-oxygen) and
oxides for reagents, they are predicted to not be energetically favorable. For Rb2NaSnBr6 more
equations with different reagents were tested with the compound showing energetically favorable
reactions until all reagents were compounds of the respected element needed for Rb2NaSnBr6.

Given the predictions of the calculations, this could indicate that the PSSs the algorithm gen-
erates are likely not possible with current synthesis because compound-based reagents that are
typically used in synthesis, especially considering the cuprates (copper-oxygen), and the equa-
tions are not coming out as energetically favorable. A potential explanation is due to the PSSs
not existing, therefore, the DFT calculations are predicting a positive energetic favorably as
so. Further investigation is necessary as the calculations could be implemented differently in
QE as well as the data being compared to more experimental data. Rb2NaSnBr6 still needs
to be synthesized. What is shown is that DFT models different reagents to better guide the
experimentalist on their synthesis.
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Figure 1: Rb2NaSnBr6

Figure 2: BaSrLiCu3O5

Figure 3: BaSr2LiCu4O7
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PSS Reagent PSS + Product Ef

BaSrLiCu3O5 Ba + Sr + Li + Cu3 + O5 BaSrLiCu3O5 -
BaSrLiCu3O5 2BaCO3 + 2SrOC3 + Li2CO3 + 6CuO 2BaSrLiCu3O5 + 5CO2 + 1

2O2 +
BaSr2LiCu4O7 Ba + Sr2 + Li + Cu4 + O7 BaSr2LiCu4O7 -
BaSr2LiCu4O7 2BaCO3 + 4SrCO3 + Li2CO3 + 8CuO 2BaSr2LiCu4O7 + 7CO2 + 1

2O2 +
Rb2NaSnBr6 Rb2 + Na + Sn + Br6 Rb2NaSnBr6 -
Rb2NaSnBr6 2RbBr + NaBr + SnBr2 + Br Rb2NaSnBr6 -
Rb2NaSnBr6 2RbBr + Na + SnBr4 Rb2NaSnBr6 -
Rb2NaSnBr6 2RbBr3 + Na + Sn Rb2NaSnBr6 -
Rb2NaSnBr6 4RbBr + 2NaBr + SnBr2 + SnBr4 2Rb2NaSnBr6 +

4 Conclusion
Given the many structures generated by the AI/ML algorithm rejected, many PSSs cal-

culations not completing (mostly being the cuprates), and the lack of energetically favorable
reactions with the PSSs that do complete in the DFT calculation, the APL AI/ML algorithm has
much development to undergo. Ultimately, there are numerous amounts of PSS that are worth
looking into, given how Rb2NaSnBr6 looks promising. The data found during this project will
be fed back into the algorithm which will then improve the accuracy.
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