Laser Annealing Novel Substrates for Rutile Thin Films

Monique J. Kubovsky¹, Yorick A. Birkholzer², Darrell G. Schlom^{2,3,4}

- ¹ Department of Physics, University of Florida, Gainesville, FL USA.
- ² Department of Materials Science and Engineering, Cornell University, Ithaca, NY USA.
- ³Kavli Institute for Nanoscale Science, Cornell University, Ithaca, NY USA.
- ⁴Leibniz-Institut für Kristallzüchtung, Berlin, Germany.

Introduction

- Superconductivity discovered in epitaxially strained RuO₂ thin films [1]
- Possibility for other rutile thin films to superconduct
- Need a set of optimally prepared substrates

- Desired criteria:
 - Stabile under oxidizing and reducing conditions at high temperatures
 - Rutile-like crystal structure
 - Oxide with octahedral coordination

Methods

- Laser annealing
- Furnace annealing
- HF acid etching
- Atomic force microscopy

Results

Laser annealing (001) BeAl₂O₄:

- Laser annealing (010) BeAl₂O₄:
 - Double termination

~3/5 unit cell step height (0.56 nm)

Furnace annealing (010) BeAl₂O₄:

Needle defects

• Laser annealing (010) Mg₂SiO₄:

Results (Continued)

• Furnace annealing (001) topaz:

Furnace annealing (010) topaz:

Double termination

~1/4 unit cell step height (0.22 nm)

Conclusions

Successfully developed processes that prepare these substrates for thin film deposition, accelerating the search for superconducting rutiles

Acknowledgements

This research was supported by the National Science Foundation under Cooperative Agreement No. DMR-2150446.

References

¹J.P. Ruf et al., Nat. Commun. 12, (2021), 41467.