

Refining m-plane α -Al₂O₃ Substrates for Conductive α -(Al_xGa_{1-x})₂O₃ Thin Films

Rihana Burciaga Mentor: Jacob Steele Clark Atlanta University & Cornell University

Introduction

 α -Al₂O₃ has gained increasing popularity due to its ultra-wide bandgap making it highly compatibility with α - Ga₂O₃ among other benefits like affordability, high structural quality, thermal stability, and corundum structure. Some key factors in controlling surface quality is growing on the *m*-plane as it remains phase-pure and growing on vicinal surfaces as they are expected to improve thin film quality. The 0°, 0.1°, 0.2°, 0.4° miscut angles were used in this project. The goal is to explore how sapphire substrates with varying miscut angles respond to thermal annealing using a CO₂ laser heater and to identify the conditions that produce the most favorable morphology; step-flow growth.

Results: 2.5 nm $x (\mu m)$ 3.0 nm 2.5 2.0 1.5

4.0 nm

10.0

8.0

6.0

4.0

2.0

x (μm)

 $x (\mu m)$

Proposed Preferred Parameters:

0.1° Temp: 1400 - 1450°C Temp: 1400- 1420°C Ramp: 500°C/min Ramp: 500°C/min **R.S.** : 20rpm **R.S.** : 20rpm Time: 5min Time: 5 min **Cool Rate: Quenched Cool Rate: Quenched**

0.4° 0.2° **Temp:** ≥ 1200 Temp: 1200 - 1225°C Ramp: 500°C/min Ramp: 100°C/min **R.S.** : 20rpm **R.S.**: 20rpm Time: 5 min Time: 5 min

Cool Rate: 500°C/min Cool Rate: 100°C/min

Conclusions/Future Work:

AFM images showcase best step formation possible for each miscut in the given 2-month timeframe at PARADIM Lab.

Next steps include:

- Making improvements to parameters
- Growing α Ga₂O₃ thin films comparing electrical properties and surface quality of each
- **Demonstrating consistency**
- Allowing for new applications of α -Al₂O₃ substrates

Acknowledgements

I would like to give a special thanks to those who make all of this possible: PREM, NSF, PARADIM Jacob Steele, Dr. Darrel G. Schlom, Jim Overhiser, Dr. Conrad Ingram

Methodology

Miscut Options: 0°, 0.1°, 0.2°, 0.4°

Annealed in MBE Chamber using a CO₂ Laser Heater

Viewed in AFM checking for even step formation on surface Used results to make adjustments to parameters

0.2°

0.4°

Geared focus toward finding a recipe for one miscut at a time

Used recipe with best results to help guide the parameters for the next miscut

