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Mechanisms for superconductivity below a critical temperature in materials with a superconducting phase transition 

have not been established, restricting the design and production of new high-temperature superconductors. In this 

work, we investigate the implementation of generative AI in conjunction with experimental data to produce a closed 

loop machine learning model to accelerate the discovery of superconductors. We use solid state and hydrothermal 

processes to synthesize predicted cuprate superconductors. Characterization of resulting diffraction patterns and 

isolation of unknown phases contributes raw data and human classification to the machine learning model to 

improve future materials predictions. Possible new phases were synthesized based on AI predictions; however, 

superconducting properties from the realized compounds were not observed. 

 

Introduction 

Materials that exhibit superconducting properties 

at ambient conditions have potential for a wide array of 

applications including efficient electric power 

generation and transportation, quantum computing, and 

high-resolution MRI devices. Superconductivity is 

described by the ability to conduct electrical current 

with zero resistance and expel an external magnetic 

field below a critical temperature (TC). Currently, 

materials that undergo a phase transition to a 

superconducting state typically do so only when cooled 

to temperatures between 0 K and 10 K via liquid 

helium, greatly limiting the general applicability of 

superconductors. 

High-temperature superconductors are materials 

with transition temperatures from 30 K to 140 K. 

Cuprate superconductors are a family of such materials 

and have the highest known TC’s at ambient pressure. 

The layered structure of charge reservoirs and copper 

oxide (CuO2) planes characteristic of cuprates is thought 

to allow for superconducting current to flow in the 

CuO2 planes. 

Despite many theories of superconductivity, the 

mechanism for this property is not defined for all 

superconductors, making it difficult to propose and 

synthesize new materials with superconducting 

properties. In this study, we explore the possibility of 

synthesizing materials predicted in a closed loop 

machine learning approach to accelerate the discovery 

of novel superconductors. 

The closed loop process begins with a generative 

artificial intelligence (AI) model, a collaboration with 

the Johns Hopkins University Applied Physics 

Laboratory and Microsoft, predicting millions of 

complex chemical formulas and structures for possible 

superconductors, varying from three to eight different 

elements in the composition. A down selection process 

occurs to isolate materials in the cuprate family with 

feasible structures and with the highest transition 

temperatures. Choosing a synthesis method and 

subsequent parameters, including reagents and heating 

profile, we attempt to synthesize the predicted material. 

After characterization of the sample, the synthesis and 

characterization process can be iterated multiple times 

to reach a desired product. The samples are tested for 

superconductivity near 0 K, and the experimental data, 

both raw data and human interpretation, are fed back 

into the machine learning model. 

Methods 

The predicted compounds were synthesized by 

solid state synthesis: combining the stoichiometric ratios 

of selected carbonate or oxide reagents with a mortar 

and pestle to form a homogenous powder. The powder 

was then placed in an alumina (Al2O3) crucible and 

annealed in a furnace ramping up to temperature at 200 

°C/h, dwelling at 800 °C for 12 h, and ramping down at 



200 °C/h. After recombining the powder, a similar 

annealing process was repeated with a dwell 

temperature of 900 °C. 

Solid state synthesis is a common method for 

initial materials creation, but hydrothermal synthesis 

provides more parameters to tune and was explored as a 

secondary approach to solid state synthesis. The 

addition of a solvent in a PTFE lined vessel, housed in a 

hydrothermal bomb, can change the acidity, solubility, 

and oxidizing potential of the reagents, altering the 

reaction that occurs. For predicted materials that do not 

preferentially form in air, hydrothermal techniques can 

be a means to achieve alternate oxidation states. 

Pressure can also be tuned by varying the amount of 

solvent in the vessel. 

Samples were characterized after each annealing 

step with a Powder X-Ray Diffractometer (PXRD) to 

determine phases present in the powder. An x-ray source 

is diffracted by the sample and sensed by the x-ray 

detector, characterizing the chemical composition and 

structure type. Diffraction patterns were verified with 

existing phases found in the Bruker Eva database and 

Inorganic Crystal Structure Database (ICSD). Patterns 

that did not fit with available data indicate the possible 

synthesis of a new phase. 

Tests for superconductivity were performed with a 

Magnetic Property Measurement System (MPMS) to 

quantify the alternating current (AC) susceptibility vs 

temperature as the material was cooled from 300 K to 2 

K.  

Results 

Majority unknown phases were observed for 

several samples targeting AI predicted and down 

selected cuprate superconductors (Figure 1). By 

omitting reagents and varying the stoichiometric ratios, 

we explored the vast phase space of the predictions to 

identify the elements and quantities of reagents 

composing the unknowns. Unknown patterns varied 

with the two heating profiles and were often realized or 

intensified at the higher temperature. The unknown 

phases were specified as such and reinputted into the 

machine learning model. Most targeted materials were a 

mixture of known binaries, ternaries, and quaternaries, 

essentially functioning as null results for the machine 

learning model. No phase pure unknown samples were 

discovered but additional effort spent isolating the 

unknown patterns could achieve this result, leading to 

successful crystal growth and characterization. 

Previously unidentified diffraction patterns are valuable 

results for the advancement of generative AI and could 

suggest the realization of new materials. 

a)

b)

Figure 1. (a) PXRD scans from synthesis of predicted material 

Ba6SrLi3TiCu7(SbO10)2 at different heating profiles. Scans 

show both a mixture of known patterns and a majority phase 

unknown, prevalent at 900°C and highlighted by yellow 

rectangles. (b) Attempt to isolate unknown peaks by tuning the 

stoichiometric ratio of reagents. Excess antimony alters the 

pattern. Excess lithium and strontium preserve the unknown 

peaks, indicating they are present in the unknown 

composition. 

MPMS measurements concluded that the predicted 

and synthesized compounds are not superconducting 

(Figure 2). Superconductivity is indicated by a sharp 

downward slope to a negative AC susceptibility value as 

the temperature approaches 0 K, illustrating the 

expulsion of a magnetic field. The complex 

compositions and structures of the predictions prevented 

the formation of the intended materials via solid state 

and hydrothermal synthesis; thus, the predicted 

structures may be favorable for superconductivity but 

require further synthesis attempts. 



 

Figure 2. Superconductivity results of a sample containing 

synthesis attempt of Ba6SrLi3TiCu7(SbO10)2 annealed at 900°C 

(Figure 2). Test shows no superconducting properties. 

Conclusion 

Lack of knowledge about superconducting 

mechanisms makes the realization of novel high 

temperature superconductors challenging. Generative 

AI, in combination with experimental data, could 

advance the discovery of materials hosting specific, 

advantageous properties. Solid state synthesis was used 

as an initial method to create predicted materials, and 

we identified and refined several unknown phases of the 

resulting samples. Despite not finding any 

superconducting results, possible new phases have been 

synthesized based on AI prediction. Continuing to 

isolate these unknown peaks of interesting compounds 

to achieve phase pure samples can provide better 

experimental data to train the ML model and improve 

predictive power for the advancement of materials 

science.  
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