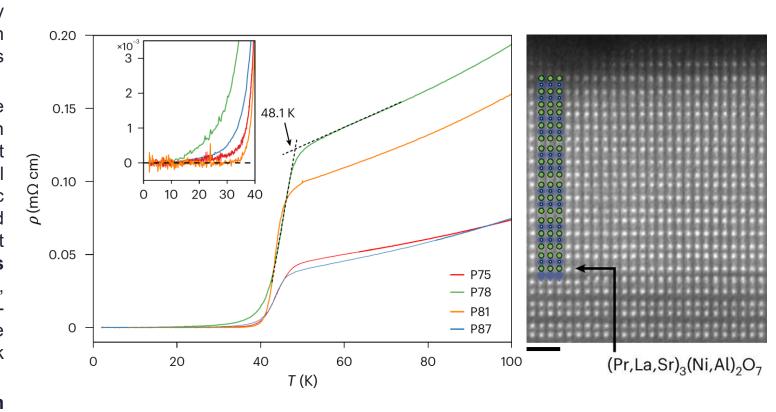
High-Temperature Superconductivity in New Nickelate at 1 atm Pressure


Superconductivity is the ability of certain materials to conduct electricity with zero resistance. Though technologically promising, stabilizing superconductivity requires extremely low temperatures or extremely high pressures – constraints which not only impede applications but also limit fundamental research.

A new family of nickel-based superconductors achieve relatively high superconducting temperatures under high pressures. Instead of applying external pressure, a team at Stanford used thin-film growth techniques to impart lateral compression on thin films deposited atomic layer by atomic layer, conforming the crystalline lattice to a substrate and stabilizing superconductivity in La₃Ni₂O₇ at ambient pressure for the first time. Now, by **fine-tuning the films with praseodymium substitution**, growth optimization, and precision sample annealing, they achieve superconductivity in films at 1 atm at temperatures comparable to those which require more than 100,000 atm in bulk samples.

PARADIM's capabilities in high-resolution electron microscopy provided the team with insights to the thin film-substrate interface, the role of defects, and the impact of the oxygen content in the nickelate films.

Y. Liu, et al. Nat. Mater. 24, 1221–1227 (2025).

Harold Y. Hwang (Stanford) and David A. Muller (Cornell)

Figure. Superconductivity in thin-film La₂PrNi₂O₇. Left) Resistivity vs. temperature curves of several compressively strained thin films and onset of the zero-resistance state (inset). Right) Scanning transmission electron micrograph showing the layered atomic structure of a La₂PrNi₂O₇ film and the SrLaAlO₄ substrate. Scale bar 1 nm.

